Search results
Results from the WOW.Com Content Network
Phenolphthalein is slightly soluble in water and usually is dissolved in alcohols in experiments. It is a weak acid, which can lose H + ions in solution. The nonionized phenolphthalein molecule is colorless and the double deprotonated phenolphthalein ion is fuchsia. Further proton loss in higher pH occurs slowly and leads to a colorless form.
Conversely, if a 10-fold excess of the acid occurs with respect to the base, the ratio is 1:10 and the pH is pK a − 1 or pK b − 1. For optimal accuracy, the color difference between the two species should be as clear as possible, and the narrower the pH range of the color change the better.
A roll of universal indicator pape Colors of universal indicator. A universal indicator is a pH indicator made of a solution of several compounds that exhibit various smooth colour changes over a wide range pH values to indicate the acidity or alkalinity of solutions. A universal indicator can be in paper form or present in a form of a solution ...
Chemical structure of phenolphthalein, a common phthalein dye. Phthalein dyes are a class of dyes mainly used as pH indicators, due to their ability to change colors depending on pH. [1] They are formed by the reaction of phthalic anhydride with various phenols. They are a subclass of triarylmethane dyes. Common phthalein dyes include ...
At low pH, the dye absorbs ultraviolet and blue light most strongly and appears yellow in solution. In solution at pH 3.6 (in the middle of the transition range of this pH indicator) obtained by dissolution in water without any pH adjustment, bromophenol blue has a characteristic green red colour, where the apparent colour shifts depending on ...
To prepare a solution for use as pH indicator, dissolve 0.10 g in 8.0 cm 3 N/50 (a.k.a. 0.02 Normal) NaOH and dilute with water to 250 cm 3. To prepare a solution for use as indicator in volumetric work, dissolve 0.1 g in 100 cm 3 of 50% (v/v) ethanol. [5]
An acid–base titration is a method of quantitative analysis for determining the concentration of Brønsted-Lowry acid or base (titrate) by neutralizing it using a solution of known concentration (titrant). [1] A pH indicator is used to monitor the progress of the acid–base reaction and a titration curve can be constructed. [1]
The main use of litmus is to test whether a solution is acidic or basic, as blue litmus paper turns red under acidic conditions, and red litmus paper turns blue under basic or alkaline conditions, with the color change occurring over the pH range 4.5–8.3 at 25 °C (77 °F). Neutral litmus paper is purple. [2]