enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Feature selection - Wikipedia

    en.wikipedia.org/wiki/Feature_selection

    Embedded methods are a catch-all group of techniques which perform feature selection as part of the model construction process. The exemplar of this approach is the LASSO method for constructing a linear model, which penalizes the regression coefficients with an L1 penalty, shrinking many of them to zero.

  3. Kanade–Lucas–Tomasi feature tracker - Wikipedia

    en.wikipedia.org/wiki/Kanade–Lucas–Tomasi...

    In the second paper Tomasi and Kanade [2] used the same basic method for finding the registration due to the translation but improved the technique by tracking features that are suitable for the tracking algorithm. The proposed features would be selected if both the eigenvalues of the gradient matrix were larger than some threshold.

  4. Dimensionality reduction - Wikipedia

    en.wikipedia.org/wiki/Dimensionality_reduction

    The process of feature selection aims to find a suitable subset of the input variables (features, or attributes) for the task at hand.The three strategies are: the filter strategy (e.g., information gain), the wrapper strategy (e.g., accuracy-guided search), and the embedded strategy (features are added or removed while building the model based on prediction errors).

  5. Embedded case study - Wikipedia

    en.wikipedia.org/wiki/Embedded_case_study

    An embedded case study is a case study containing more than one sub-unit of analysis (Yin, 2003). Similar to a case study, an embedded case study methodology provides a means of integrating quantitative and qualitative methods into a single research study (Scholz & Tietje, 2002; Yin 2003). However, the identification of sub-units allows for a ...

  6. Feature engineering - Wikipedia

    en.wikipedia.org/wiki/Feature_engineering

    Feature engineering in machine learning and statistical modeling involves selecting, creating, transforming, and extracting data features. Key components include feature creation from existing data, transforming and imputing missing or invalid features, reducing data dimensionality through methods like Principal Components Analysis (PCA), Independent Component Analysis (ICA), and Linear ...

  7. Feature (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Feature_(machine_learning)

    In pattern recognition and machine learning, a feature vector is an n-dimensional vector of numerical features that represent some object. Many algorithms in machine learning require a numerical representation of objects, since such representations facilitate processing and statistical analysis.

  8. Relief (feature selection) - Wikipedia

    en.wikipedia.org/wiki/Relief_(feature_selection)

    Relief is an algorithm developed by Kira and Rendell in 1992 that takes a filter-method approach to feature selection that is notably sensitive to feature interactions. [1] [2] It was originally designed for application to binary classification problems with discrete or numerical features.

  9. Feature learning - Wikipedia

    en.wikipedia.org/wiki/Feature_learning

    The simplest is to add k binary features to each sample, where each feature j has value one iff the jth centroid learned by k-means is the closest to the sample under consideration. [6] It is also possible to use the distances to the clusters as features, perhaps after transforming them through a radial basis function (a technique that has been ...