Search results
Results from the WOW.Com Content Network
Linear probing - Wikipedia
A trivial but pervasive example of perfect hashing is implicit in the (virtual) memory address space of a computer. Since each byte of virtual memory is a distinct, unique, directly addressable storage location, the value of the starting address where any object is stored in memory can be considered a de facto perfect hash of that object into ...
John Smith and Sandra Dee share the same hash value of 02, causing a hash collision. In computer science, a hash collision or hash clash [1] is when two distinct pieces of data in a hash table share the same hash value. The hash value in this case is derived from a hash function which takes a data input and returns a fixed length of bits. [2]
Quadratic probing is an open addressing scheme in computer programming for resolving hash collisions in hash tables. Quadratic probing operates by taking the original hash index and adding successive values of an arbitrary quadratic polynomial until an open slot is found. An example sequence using quadratic probing is: +, +, +, +,...
hash HAS-160: 160 bits hash HAVAL: 128 to 256 bits hash JH: 224 to 512 bits hash LSH [19] 256 to 512 bits wide-pipe Merkle–Damgård construction: MD2: 128 bits hash MD4: 128 bits hash MD5: 128 bits Merkle–Damgård construction: MD6: up to 512 bits Merkle tree NLFSR (it is also a keyed hash function) RadioGatún: arbitrary ideal mangling ...
For example, if the input is 123 456 789 and the hash table size 10 000, then squaring the key produces 15 241 578 750 190 521, so the hash code is taken as the middle 4 digits of the 17-digit number (ignoring the high digit) 8750. The mid-squares method produces a reasonable hash code if there is not a lot of leading or trailing zeros in the key.
The hop information bit-map indicates that item c at entry 9 can be moved to entry 11. Finally, a is moved to entry 9. Part (b) shows the table state just before adding x. Hopscotch hashing is a scheme in computer programming for resolving hash collisions of values of hash functions in a table using open addressing.
In computer science, locality-sensitive hashing (LSH) is a fuzzy hashing technique that hashes similar input items into the same "buckets" with high probability. [1] ( The number of buckets is much smaller than the universe of possible input items.) [1] Since similar items end up in the same buckets, this technique can be used for data clustering and nearest neighbor search.