enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Exponential function - Wikipedia

    en.wikipedia.org/wiki/Exponential_function

    For example, from the differential equation definition, e x ex = 1 when x = 0 and its derivative using the product rule is e x exe x ex = 0 for all x, so e x ex = 1 for all x. From any of these definitions it can be shown that the exponential function obeys the basic exponentiation identity.

  3. Derivative - Wikipedia

    en.wikipedia.org/wiki/Derivative

    The derivative of ′ is the second derivative, denoted as ⁠ ″ ⁠, and the derivative of ″ is the third derivative, denoted as ⁠ ‴ ⁠. By continuing this process, if it exists, the ⁠ n {\displaystyle n} ⁠ th derivative is the derivative of the ⁠ ( n − 1 ) {\displaystyle (n-1)} ⁠ th derivative or the derivative of order ...

  4. e (mathematical constant) - Wikipedia

    en.wikipedia.org/wiki/E_(mathematical_constant)

    The global maximum of xx occurs at x = e. Steiner's problem asks to find the global maximum for the function =. This maximum occurs precisely at x = e. (One can check that the derivative of ln f(x) is zero only for this value of x.) Similarly, x = 1/e is where the global minimum occurs for the function

  5. Characterizations of the exponential function - Wikipedia

    en.wikipedia.org/wiki/Characterizations_of_the...

    Define () = to be the unique solution to the differential equation with initial value: ′ =, =, where ′ = denotes the derivative of y. Functional equation. The exponential function e x {\displaystyle e^{x}} is the unique function f with the multiplicative property f ( x + y ) = f ( x ) f ( y ) {\displaystyle f(x+y)=f(x)f(y)} for all x , y ...

  6. Differentiation rules - Wikipedia

    en.wikipedia.org/wiki/Differentiation_rules

    The derivative of the function at a point is the slope of the line tangent to the curve at the point. Slope of the constant function is zero, because the tangent line to the constant function is horizontal and its angle is zero. In other words, the value of the constant function, y, will not change as the value of x increases or decreases.

  7. Matrix exponential - Wikipedia

    en.wikipedia.org/wiki/Matrix_exponential

    The exponential of X, denoted by e X or exp(X), ... The derivative at t = 0 is just the matrix X, which is to say that X generates this one-parameter subgroup.

  8. Euler's formula - Wikipedia

    en.wikipedia.org/wiki/Euler's_formula

    The exponential function e x for real values of x may be defined in a few different equivalent ways (see Characterizations of the exponential function). Several of these methods may be directly extended to give definitions of e z for complex values of z simply by substituting z in place of x and using the complex algebraic operations. In ...

  9. Differential of a function - Wikipedia

    en.wikipedia.org/wiki/Differential_of_a_function

    A number of properties of the differential follow in a straightforward manner from the corresponding properties of the derivative, partial derivative, and total derivative. These include: [ 11 ] Linearity : For constants a and b and differentiable functions f and g , d ( a f + b g ) = a d f + b d g . {\displaystyle d(af+bg)=a\,df+b\,dg.}