Search results
Results from the WOW.Com Content Network
The SI unit of kinematic viscosity is square meter per second (m 2 /s), whereas the CGS unit for kinematic viscosity is the stokes (St, or cm 2 ·s −1 = 0.0001 m 2 ·s −1), named after Sir George Gabriel Stokes. [29] In U.S. usage, stoke is sometimes used as the singular form.
where is absolute temperature in kelvins, is the kinematic viscosity in centistokes, is the zero order modified Bessel function of the second kind, and and are empirical parameters specific to each liquid.
Consequently, if a liquid has dynamic viscosity of n centiPoise, and its density is not too different from that of water, then its kinematic viscosity is around n centiStokes. For gas, the dynamic viscosity is usually in the range of 10 to 20 microPascal-seconds, or 0.01 to 0.02 centiPoise. The density is usually on the order of 0.5 to 5 kg/m^3.
μ and λ are proportionality constants associated with the assumption that stress depends on strain linearly; μ is called the first coefficient of viscosity or shear viscosity (usually just called "viscosity") and λ is the second coefficient of viscosity or volume viscosity (and it is related to bulk viscosity).
T is the absolute temperature. Note that the mobility μ = v d /F can be calculated based on the viscosity of the gas; Therefore, the Einstein–Smoluchowski equation also provides a relation between the mass diffusivity and the viscosity of the gas.
β is the thermal expansion coefficient (equals to 1/T, for ideal gases, where T is absolute temperature). is the kinematic viscosity; α is the thermal diffusivity; T s is the surface temperature; T ∞ is the quiescent temperature (fluid temperature far from the surface of the object) Gr x is the Grashof number for characteristic length x
μ is the dynamic viscosity of the fluid (Pa·s or N·s/m 2 or kg/(m·s)) ν is the kinematic viscosity of the fluid (m 2 /s). The Brezina equation. The Reynolds number can be defined for several different situations where a fluid is in relative motion to a surface.
The poise (symbol P; / p ɔɪ z, p w ɑː z /) is the unit of dynamic viscosity (absolute viscosity) in the centimetre–gram–second system of units (CGS). [1] It is named after Jean Léonard Marie Poiseuille (see Hagen–Poiseuille equation). The centipoise (1 cP = 0.01 P) is more commonly used than the poise itself.