Search results
Results from the WOW.Com Content Network
"Keras 3 is a full rewrite of Keras [and can be used] as a low-level cross-framework language to develop custom components such as layers, models, or metrics that can be used in native workflows in JAX, TensorFlow, or PyTorch — with one codebase."
The use of different model parameters and different corpus sizes can greatly affect the quality of a word2vec model. Accuracy can be improved in a number of ways, including the choice of model architecture (CBOW or Skip-Gram), increasing the training data set, increasing the number of vector dimensions, and increasing the window size of words ...
Deeplearning4j serves machine-learning models for inference in production using the free developer edition of SKIL, the Skymind Intelligence Layer. [27] [28] A model server serves the parametric machine-learning models that makes decisions about data. It is used for the inference stage of a machine-learning workflow, after data pipelines and ...
TensorFlow serves as a core platform and library for machine learning. TensorFlow's APIs use Keras to allow users to make their own machine-learning models. [33] [43] In addition to building and training their model, TensorFlow can also help load the data to train the model, and deploy it using TensorFlow Serving. [44]
The MDL principle posits that the best model for a dataset is the one that provides the shortest combined encoding of the model and the data. In the context of autoencoders , this principle is applied to ensure that the learned representation is not only compact but also interpretable and efficient for reconstruction.
Unsupervised learning is a framework in machine learning where, in contrast to supervised learning, algorithms learn patterns exclusively from unlabeled data. [1] Other frameworks in the spectrum of supervisions include weak- or semi-supervision, where a small portion of the data is tagged, and self-supervision.
Extract, load, transform (ELT) is an alternative to extract, transform, load (ETL) used with data lake implementations. In contrast to ETL, in ELT models the data is not transformed on entry to the data lake, but stored in its original raw format. This enables faster loading times.
Modern activation functions include the smooth version of the ReLU, the GELU, which was used in the 2018 BERT model, [2] the logistic function used in the 2012 speech recognition model developed by Hinton et al, [3] the ReLU used in the 2012 AlexNet computer vision model [4] [5] and in the 2015 ResNet model.