Search results
Results from the WOW.Com Content Network
In mathematics, the Riemann hypothesis is the conjecture that the Riemann zeta function has its zeros only at the negative even integers and complex numbers with real part 1 / 2 . Many consider it to be the most important unsolved problem in pure mathematics . [ 1 ]
The Riemann hypothesis is that all nontrivial zeros of the analytical continuation of the Riemann zeta function have a real part of 1 / 2 . A proof or disproof of this would have far-reaching implications in number theory , especially for the distribution of prime numbers .
It asks for more work on the distribution of primes and generalizations of Riemann hypothesis to other rings where prime ideals take the place of primes. Absolute value of the ζ-function. Hilbert's eighth problem includes the Riemann hypothesis, which states that this function can only have non-trivial zeroes along the line x = 1/2 [2].
Hilbert's problems ranged greatly in topic and precision. Some of them, like the 3rd problem, which was the first to be solved, or the 8th problem (the Riemann hypothesis), which still remains unresolved, were presented precisely enough to enable a clear affirmative or negative answer.
Specifically, the Riemann Hypothesis is about when 𝜁(s)=0; the official statement is, “Every nontrivial zero of the Riemann zeta function has real part 1/2.”
8. Problems of prime numbers (The "Riemann Hypothesis"). 9. Proof of the most general law of reciprocity in any number field. 10. Determination of the solvability of a Diophantine equation. 11. Quadratic forms with any algebraic numerical coefficients 12. Extensions of Kronecker's theorem on Abelian fields to any algebraic realm of rationality 13.
In mathematics, Riemann–Hilbert problems, named after Bernhard Riemann and David Hilbert, are a class of problems that arise in the study of differential equations in the complex plane. Several existence theorems for Riemann–Hilbert problems have been produced by Mark Krein , Israel Gohberg and others.
Riemann had been in a competition with Weierstrass since 1857 to solve the Jacobian inverse problems for abelian integrals, a generalization of elliptic integrals. Riemann used theta functions in several variables and reduced the problem to the determination of the zeros of these theta functions.