Search results
Results from the WOW.Com Content Network
In computer science, deadlock prevention algorithms are used in concurrent programming when multiple processes must acquire more than one shared resource. If two or more concurrent processes obtain multiple resources indiscriminately, a situation can occur where each process has a resource needed by another process.
A wait-for graph in computer science is a directed graph used for deadlock detection in operating systems and relational database systems.. In computer science, a system that allows concurrent operation of multiple processes and locking of resources and which does not provide mechanisms to avoid or prevent deadlock must support a mechanism to detect deadlocks and an algorithm for recovering ...
Dekker's or Peterson's algorithm are possible substitutes if atomic locking operations are not available. Careless use of locks can result in deadlock or livelock. A number of strategies can be used to avoid or recover from deadlocks or livelocks, both at design-time and at run-time. (The most common strategy is to standardize the lock ...
Distributed deadlocks can be detected either by constructing a global wait-for graph from local wait-for graphs at a deadlock detector or by a distributed algorithm like edge chasing. Phantom deadlocks are deadlocks that are falsely detected in a distributed system due to system internal delays but do not actually exist.
Banker's algorithm is a resource allocation and deadlock avoidance algorithm developed by Edsger Dijkstra that tests for safety by simulating the allocation of predetermined maximum possible amounts of all resources, and then makes an "s-state" check to test for possible deadlock conditions for all other pending activities, before deciding whether allocation should be allowed to continue.
occurrence of deadlock in distributed system. P 1 initiates deadlock detection. C 1 sends the probe saying P 2 depends on P 3. Once the message is received by C 2, it checks whether P 3 is idle. P 3 is idle because it is locally dependent on P 4 and updates dependent 3 (2) to True. As above, C 2 sends probe to C 3 and C 3 sends probe to C 1.
An important aspect to be considered while designing a routing algorithm is avoiding a deadlock. Turn restriction routing [1] is a routing algorithm for mesh-family of topologies which avoids deadlocks by restricting the types of turns that are allowed in the algorithm while determining the route from source node to destination node in a network.
Deadlock freedom is a safety property: the "bad thing" is a deadlock (which is discrete). Most of the time, knowing that a program eventually does some "good thing" is not satisfactory; we want to know that the program performs the "good thing" within some number of steps or before some deadline.