Search results
Results from the WOW.Com Content Network
A bitruncated cube is a truncated octahedron. A bitruncated cubic honeycomb - Cubic cells become orange truncated octahedra, and vertices are replaced by blue truncated octahedra. In geometry, a bitruncation is an operation on regular polytopes. The original edges are lost completely and the original faces remain as smaller copies of themselves.
where r, s, and t are positive real numbers that determine the main features of the superquadric. Namely: less than 1: a pointy octahedron modified to have concave faces and sharp edges. exactly 1: a regular octahedron. between 1 and 2: an octahedron modified to have convex faces, blunt edges and blunt corners. exactly 2: a sphere
An object with this symmetry is characterized by the part of the object in the fundamental domain, for example the cube is given by z = 1, and the octahedron by x + y + z = 1 (or the corresponding inequalities, to get the solid instead of the surface). ax + by + cz = 1 gives a polyhedron with 48 faces, e.g. the disdyakis dodecahedron.
Example: an octahedron is a birectification of a cube: {3,4} = 2r{4,3}. Another type of truncation, cantellation , cuts edges and vertices, removing the original edges, replacing them with rectangles, removing the original vertices, and replacing them with the faces of the dual of the original regular polyhedra or tiling.
The rectification of any regular self-dual polyhedron or tiling will result in another regular polyhedron or tiling with a tiling order of 4, for example the tetrahedron {3,3} becoming an octahedron {3,4}. As a special case, a square tiling {4,4} will turn into another square tiling {4,4} under a rectification operation.
An octahedron can be any polyhedron with eight faces. In a previous example, the regular octahedron has 6 vertices and 12 edges, the minimum for an octahedron; irregular octahedra may have as many as 12 vertices and 18 edges. [24] There are 257 topologically distinct convex octahedra, excluding mirror images. More specifically there are 2, 11 ...
In numerical analysis, Lebedev quadrature, named after Vyacheslav Ivanovich Lebedev, is an approximation to the surface integral of a function over a three-dimensional sphere.
For instance, K 2,2,2 is the complete tripartite graph of a regular octahedron, which can be partitioned into three independent sets each consisting of two opposite vertices. A complete multipartite graph is a graph that is complete k -partite for some k . [ 3 ]