Search results
Results from the WOW.Com Content Network
Reactive nitrogen species act together with reactive oxygen species (ROS) to damage cells, causing nitrosative stress. Therefore, these two species are often collectively referred to as ROS/RNS. Reactive nitrogen species are also continuously produced in plants as by-products of aerobic metabolism or in response to stress. [3]
Nitrotyrosine is a product of tyrosine nitration mediated by reactive nitrogen species such as peroxynitrite anion and nitrogen dioxide. Nitrotyrosine is identified as an indicator or marker of cell damage, inflammation as well as NO (nitric oxide) production. Nitrotyrosine is formed in the presence of the active metabolite NO.
Reactive nitrogen ("Nr"), also known as fixed nitrogen [1], refers to all forms of nitrogen present in the environment except for molecular nitrogen (N 2 ). [ 2 ] While nitrogen is an essential element for life on Earth, molecular nitrogen is comparatively unreactive, and must be converted to other chemical forms via nitrogen fixation before it ...
It is formed in vivo from the diffusion-controlled reaction of nitrogen monoxide (ON •) and superoxide (O •− 2). It is an isomer of nitric acid and isomerises with a rate constant of k = 1.2 s −1, a process whereby up to 5% of hydroxyl and nitrogen dioxide radicals may be formed. It oxidises and nitrates aromatic compounds in low yield.
The reactive nitrogen species arise once the reactive oxygen species destroy the mitochondria. [28] This leads to the formation of the reactive nitrogen species, which are responsible for damaging DNA in arsenic poisoning. [28] Mitochondrial damage is known to cause the release of reactive nitrogen species, due to the reaction between ...
In the 1980s and 1990s methods of producing it in high concentrations were identified, and the molecule was shown through destruction to contain both nitrogen and chlorine. [ 8 ] According to Julian Fairey, research on the compound slowed down in the mid-1990s after attempts to identify it were unsuccessful.
The nitrogen cycle is of particular interest to ecologists because nitrogen availability can affect the rate of key ecosystem processes, including primary production and decomposition. Human activities such as fossil fuel combustion, use of artificial nitrogen fertilizers, and release of nitrogen in wastewater have dramatically altered the ...
Damage to DNA that occurs naturally can result from metabolic or hydrolytic processes. Metabolism releases compounds that damage DNA including reactive oxygen species, reactive nitrogen species, reactive carbonyl species, lipid peroxidation products, and alkylating agents, among others, while hydrolysis cleaves chemical bonds in DNA. [8]