Search results
Results from the WOW.Com Content Network
The remaining numbers are doubled and incremented by one, giving a list of the odd prime numbers (that is, all primes except 2) below 2n + 2. The sieve of Sundaram sieves out the composite numbers just as the sieve of Eratosthenes does, but even numbers are not considered; the work of "crossing out" the multiples of 2 is done by the final ...
Legendre's conjecture, proposed by Adrien-Marie Legendre, states that there is a prime number between and (+) for every positive integer. [1] The conjecture is one of Landau's problems (1912) on prime numbers, and is one of many open problems on the spacing of prime numbers.
and at least another prime between x 2 and x(x + 1). It can also be phrased equivalently as stating that the prime-counting function must take unequal values at the endpoints of each range. [3] That is: π (x 2 − x) < π (x 2) < π (x 2 + x) for x > 1. with π (x) being the number of prime numbers less than or equal to x.
However, it does not contain all the prime numbers, since the terms gcd(n + 1, a n) are always odd and so never equal to 2. 587 is the smallest prime (other than 2) not appearing in the first 10,000 outcomes that are different from 1. Nevertheless, in the same paper it was conjectured to contain all odd primes, even though it is rather inefficient.
The following is pseudocode which combines Atkin's algorithms 3.1, 3.2, and 3.3 [1] by using a combined set s of all the numbers modulo 60 excluding those which are multiples of the prime numbers 2, 3, and 5, as per the algorithms, for a straightforward version of the algorithm that supports optional bit-packing of the wheel; although not specifically mentioned in the referenced paper, this ...
This is a list of articles about prime numbers. A prime number (or prime) is a natural number greater than 1 that has no positive divisors other than 1 and itself. By Euclid's theorem, there are an infinite number of prime numbers. Subsets of the prime numbers may be generated with various formulas for primes.
In mathematics, the prime-counting function is the function counting the number of prime numbers less than or equal to some real number x. [1] [2] It is denoted by π(x) (unrelated to the number π). A symmetric variant seen sometimes is π 0 (x), which is equal to π(x) − 1 ⁄ 2 if x is exactly a prime number, and equal to π(x) otherwise.
Mersenne primes and perfect numbers are two deeply interlinked types of natural numbers in number theory. Mersenne primes, named after the friar Marin Mersenne, are prime numbers that can be expressed as 2 p − 1 for some positive integer p. For example, 3 is a Mersenne prime as it is a prime number and is expressible as 2 2 − 1.