Search results
Results from the WOW.Com Content Network
It is a better measure of the aerodynamic efficiency of an aircraft than the wing aspect ratio. It is defined as: = where is span and is the wetted surface. Illustrative examples are provided by the Boeing B-47 and Avro Vulcan. Both aircraft have very similar performance although they are radically different.
A wing is a type of fin that produces both lift and drag while moving through air. Wings are defined by two shape characteristics, an airfoil section and a planform. Wing efficiency is expressed as lift-to-drag ratio, which compares the benefit of lift with the air resistance of a given wing shape, as it flies.
Nonplanar wings: results for the optimal aerodynamic efficiency ratio ε. The parameter ε is the optimal aerodynamic efficiency ratio [25] and represents the ratio between the aerodynamic efficiency of a given non-planar wing and the corresponding efficiency of a reference classical cantilevered wing with the same wing span and total lift ...
A 2022 US Air Force report shows a BWB "increases aerodynamic efficiency by at least 30% over current air force tanker and mobility aircraft". [ 21 ] Lower noise — NASA audio simulations show a 15 dB reduction of Boeing 777 -class aircraft, [ 22 ] while other studies show 22–42 dB reduction below Stage 4 level , depending on configuration.
An elliptical planform is the most efficient aerodynamic shape for an untwisted wing, leading to the lowest amount of induced drag. The semi-elliptical planform was skewed so that the centre of pressure, which occurs near the quarter-chord position at all but the highest speeds, was close to the main spar, preventing the wings from twisting ...
A fixed-wing aircraft may have more than one wing plane, stacked one above another: Biplane: two wing planes of similar size, stacked one above the other. The biplane is inherently lighter and stronger than a monoplane and was the most common configuration until the 1930s. The very first Wright Flyer I was a biplane.
This image shows the forces for two typical airfoils, a symmetrical design on the left, and an asymmetrical design more typical of low-speed designs on the right. This diagram shows only the lift components; the similar drag considerations are not illustrated. The aerodynamic center is shown, labeled "c.a."
A flying wing is an aeroplane that has no definite fuselage or tailplane, with its crew, payload, fuel, and equipment housed inside the main wing structure. A flying wing may have various small protuberances such as pods, nacelles, blisters, booms, or vertical stabilizers. [1] A clean flying wing is sometimes presented as theoretically the most ...