enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Time derivative - Wikipedia

    en.wikipedia.org/wiki/Time_derivative

    Even higher derivatives are sometimes also used: the third derivative of position with respect to time is known as the jerk. See motion graphs and derivatives. A large number of fundamental equations in physics involve first or second time derivatives of quantities. Many other fundamental quantities in science are time derivatives of one another:

  3. Fourth, fifth, and sixth derivatives of position - Wikipedia

    en.wikipedia.org/wiki/Fourth,_fifth,_and_sixth...

    Snap, [6] or jounce, [2] is the fourth derivative of the position vector with respect to time, or the rate of change of the jerk with respect to time. [4] Equivalently, it is the second derivative of acceleration or the third derivative of velocity, and is defined by any of the following equivalent expressions: = ȷ = = =.

  4. Related rates - Wikipedia

    en.wikipedia.org/wiki/Related_rates

    Differentiation with respect to time or one of the other variables requires application of the chain rule, [1] since most problems involve several variables. Fundamentally, if a function F {\displaystyle F} is defined such that F = f ( x ) {\displaystyle F=f(x)} , then the derivative of the function F {\displaystyle F} can be taken with respect ...

  5. Derivative - Wikipedia

    en.wikipedia.org/wiki/Derivative

    Suppose that a function represents the position of an object at the time. The first derivative of that function is the velocity of an object with respect to time, the second derivative of the function is the acceleration of an object with respect to time, [29] and the third derivative is the jerk. [36]

  6. Second derivative - Wikipedia

    en.wikipedia.org/wiki/Second_derivative

    The last expression is the second derivative of position (x) with respect to time. On the graph of a function , the second derivative corresponds to the curvature or concavity of the graph. The graph of a function with a positive second derivative is upwardly concave, while the graph of a function with a negative second derivative curves in the ...

  7. Differential calculus - Wikipedia

    en.wikipedia.org/wiki/Differential_calculus

    This states that differentiation is the reverse process to integration. Differentiation has applications in nearly all quantitative disciplines. In physics, the derivative of the displacement of a moving body with respect to time is the velocity of the body, and the derivative of the velocity with respect to time is acceleration.

  8. Leibniz integral rule - Wikipedia

    en.wikipedia.org/wiki/Leibniz_integral_rule

    With those tools, the Leibniz integral rule in n dimensions is [4] = () + + ˙, where Ω(t) is a time-varying domain of integration, ω is a p-form, = is the vector field of the velocity, denotes the interior product with , d x ω is the exterior derivative of ω with respect to the space variables only and ˙ is the time derivative of ω.

  9. Motion graphs and derivatives - Wikipedia

    en.wikipedia.org/wiki/Motion_graphs_and_derivatives

    Since acceleration differentiates the expression involving position, it can be rewritten as a second derivative with respect to time: a = d 2 s d t 2 . {\displaystyle a={\frac {d^{2}s}{dt^{2}}}.} Since, for the purposes of mechanics such as this, integration is the opposite of differentiation, it is also possible to express position as a ...