enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Inner product space - Wikipedia

    en.wikipedia.org/wiki/Inner_product_space

    Inner product spaces generalize Euclidean vector spaces, in which the inner product is the dot product or scalar product of Cartesian coordinates. Inner product spaces of infinite dimension are widely used in functional analysis. Inner product spaces over the field of complex numbers are sometimes referred to as unitary spaces.

  3. Riemannian manifold - Wikipedia

    en.wikipedia.org/wiki/Riemannian_manifold

    The requirement that is a positive-definite inner product then says exactly that this matrix-valued function is a symmetric positive-definite matrix at . In terms of the tensor algebra , the Riemannian metric can be written in terms of the dual basis { d x 1 , … , d x n } {\displaystyle \{dx^{1},\ldots ,dx^{n}\}} of the cotangent bundle as

  4. Outline of algebraic structures - Wikipedia

    en.wikipedia.org/wiki/Outline_of_algebraic...

    The idea is that if the grades of two elements a and b are known, then the grade of ab is known, and so the location of the product ab is determined in the decomposition. Inner product space: an F vector space V with a definite bilinear form V × V → F. Bialgebra: an associative algebra with a compatible coalgebra structure.

  5. Interior product - Wikipedia

    en.wikipedia.org/wiki/Interior_product

    In mathematics, the interior product (also known as interior derivative, interior multiplication, inner multiplication, inner derivative, insertion operator, or inner derivation) is a degree −1 (anti)derivation on the exterior algebra of differential forms on a smooth manifold.

  6. First fundamental form - Wikipedia

    en.wikipedia.org/wiki/First_fundamental_form

    In differential geometry, the first fundamental form is the inner product on the tangent space of a surface in three-dimensional Euclidean space which is induced canonically from the dot product of R 3. It permits the calculation of curvature and metric properties of a surface such as length and area in a manner consistent with the ambient space.

  7. Tensor - Wikipedia

    en.wikipedia.org/wiki/Tensor

    For example, a bilinear form is the same thing as a (0, 2)-tensor; an inner product is an example of a (0, 2)-tensor, but not all (0, 2)-tensors are inner products. In the (0, M ) -entry of the table, M denotes the dimensionality of the underlying vector space or manifold because for each dimension of the space, a separate index is needed to ...

  8. Manifold - Wikipedia

    en.wikipedia.org/wiki/Manifold

    A Riemannian manifold is a differentiable manifold in which each tangent space is equipped with an inner product , in a manner which varies smoothly from point to point. Given two tangent vectors u {\displaystyle u} and v {\displaystyle v} , the inner product u , v {\displaystyle \langle u,v\rangle } gives a real number.

  9. Hilbert space - Wikipedia

    en.wikipedia.org/wiki/Hilbert_space

    A real inner product space is defined in the same way, except that H is a real vector space and the inner product takes real values. Such an inner product will be a bilinear map and ( H , H , ⋅ , ⋅ ) {\displaystyle (H,H,\langle \cdot ,\cdot \rangle )} will form a dual system .