enow.com Web Search

  1. Ad

    related to: modulo congruence calculator with steps

Search results

  1. Results from the WOW.Com Content Network
  2. Modular multiplicative inverse - Wikipedia

    en.wikipedia.org/wiki/Modular_multiplicative_inverse

    The congruence relation, modulo m, partitions the set of integers into m congruence classes. Operations of addition and multiplication can be defined on these m objects in the following way: To either add or multiply two congruence classes, first pick a representative (in any way) from each class, then perform the usual operation for integers on the two representatives and finally take the ...

  3. Modular arithmetic - Wikipedia

    en.wikipedia.org/wiki/Modular_arithmetic

    The congruence relation is an equivalence relation. The equivalence class modulo m of an integer a is the set of all integers of the form a + k m, where k is any integer. It is called the congruence class or residue class of a modulo m, and may be denoted as (a mod m), or as a or [a] when the modulus m is known from the context.

  4. Primitive root modulo n - Wikipedia

    en.wikipedia.org/wiki/Primitive_root_modulo_n

    Primitive root modulo. n. In modular arithmetic, a number g is a primitive root modulo n if every number a coprime to n is congruent to a power of g modulo n. That is, g is a primitive root modulo n if for every integer a coprime to n, there is some integer k for which gk ≡ a (mod n). Such a value k is called the index or discrete logarithm ...

  5. Tonelli–Shanks algorithm - Wikipedia

    en.wikipedia.org/wiki/Tonelli–Shanks_algorithm

    The Tonelli–Shanks algorithm (referred to by Shanks as the RESSOL algorithm) is used in modular arithmetic to solve for r in a congruence of the form r2 ≡ n (mod p), where p is a prime: that is, to find a square root of n modulo p. Tonelli–Shanks cannot be used for composite moduli: finding square roots modulo composite numbers is a ...

  6. Modular exponentiation - Wikipedia

    en.wikipedia.org/wiki/Modular_exponentiation

    Modular exponentiation is the remainder when an integer b (the base) is raised to the power e (the exponent), and divided by a positive integer m (the modulus); that is, c = be mod m. From the definition of division, it follows that 0 ≤ c < m. For example, given b = 5, e = 3 and m = 13, dividing 53 = 125 by 13 leaves a remainder of c = 8.

  7. Lehmer random number generator - Wikipedia

    en.wikipedia.org/wiki/Lehmer_random_number_generator

    The Lehmer random number generator[1] (named after D. H. Lehmer), sometimes also referred to as the Park–Miller random number generator (after Stephen K. Park and Keith W. Miller), is a type of linear congruential generator (LCG) that operates in multiplicative group of integers modulo n. The general formula is.

  8. Multiplicative group of integers modulo n - Wikipedia

    en.wikipedia.org/wiki/Multiplicative_group_of...

    In modular arithmetic, the integers coprime (relatively prime) to n from the set of n non-negative integers form a group under multiplication modulo n, called the multiplicative group of integers modulo n. Equivalently, the elements of this group can be thought of as the congruence classes, also known as residues modulo n, that are coprime to n .

  9. Montgomery modular multiplication - Wikipedia

    en.wikipedia.org/wiki/Montgomery_modular...

    To use REDC to compute the product of 7 and 15 modulo 17, first convert to Montgomery form and multiply as integers to get 12 as above. Then apply REDC with R = 100, N = 17, N′ = 47, and T = 12. The first step sets m to 12 ⋅ 47 mod 100 = 64. The second step sets t to (12 + 64 ⋅ 17) / 100.

  1. Ad

    related to: modulo congruence calculator with steps