enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Newton's law of universal gravitation - Wikipedia

    en.wikipedia.org/wiki/Newton's_law_of_universal...

    The force is proportional to the product of the two masses and inversely proportional to the square of the distance between them: [11] Diagram of two masses attracting one another = where F is the force between the masses; G is the Newtonian constant of gravitation (6.674 × 10 −11 m 3 ⋅kg −1 ⋅s −2);

  3. Equations for a falling body - Wikipedia

    en.wikipedia.org/wiki/Equations_for_a_falling_body

    A set of equations describing the trajectories of objects subject to a constant gravitational force under normal Earth-bound conditions.Assuming constant acceleration g due to Earth's gravity, Newton's law of universal gravitation simplifies to F = mg, where F is the force exerted on a mass m by the Earth's gravitational field of strength g.

  4. List of equations in gravitation - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in...

    A common misconception occurs between centre of mass and centre of gravity.They are defined in similar ways but are not exactly the same quantity. Centre of mass is the mathematical description of placing all the mass in the region considered to one position, centre of gravity is a real physical quantity, the point of a body where the gravitational force acts.

  5. Introduction to general relativity - Wikipedia

    en.wikipedia.org/wiki/Introduction_to_general...

    The equivalence between gravitational and inertial effects does not constitute a complete theory of gravity. When it comes to explaining gravity near our own location on the Earth's surface, noting that our reference frame is not in free fall, so that fictitious forces are to be expected, provides a suitable explanation. But a freely falling ...

  6. Gravitational constant - Wikipedia

    en.wikipedia.org/wiki/Gravitational_constant

    This is because the gravitational force is an extremely weak force as compared to other fundamental forces at the laboratory scale. [d] In SI units, the CODATA-recommended value of the gravitational constant is: [1] = 6.674 30 (15) × 10 −11 m 3 ⋅kg −1 ⋅s −2. The relative standard uncertainty is 2.2 × 10 −5.

  7. Gravity - Wikipedia

    en.wikipedia.org/wiki/Gravity

    In physics, gravity (from Latin gravitas 'weight' [1]) is a fundamental interaction primarily observed as mutual attraction between all things that have mass.Gravity is, by far, the weakest of the four fundamental interactions, approximately 10 38 times weaker than the strong interaction, 10 36 times weaker than the electromagnetic force and 10 29 times weaker than the weak interaction.

  8. Gravitational acceleration - Wikipedia

    en.wikipedia.org/wiki/Gravitational_acceleration

    The gravitational force is a fictitious force. There is no gravitational acceleration, in that the proper acceleration and hence four-acceleration of objects in free fall are zero. Rather than undergoing an acceleration, objects in free fall travel along straight lines ( geodesics ) on the curved spacetime.

  9. Shell theorem - Wikipedia

    en.wikipedia.org/wiki/Shell_theorem

    The gravitational force exerted on a body at radius r will be proportional to / (the inverse square law), so the overall gravitational effect is proportional to / =, so is linear in . These results were important to Newton's analysis of planetary motion; they are not immediately obvious, but they can be proven with calculus .