Search results
Results from the WOW.Com Content Network
The p53 upregulated modulator of apoptosis (PUMA) also known as Bcl-2-binding component 3 (BBC3), is a pro-apoptotic protein, member of the Bcl-2 protein family. [5] [6] In humans, the Bcl-2-binding component 3 protein is encoded by the BBC3 gene. [5] [6] The expression of PUMA is regulated by the tumor suppressor p53.
The expression of BID is upregulated by the tumor suppressor p53, and BID has been shown to be involved in p53-mediated apoptosis. [7] The p53 protein is a transcription factor that, when activated as part of the cell's response to stress, regulates many downstream target genes, including BID. However, p53 also has a transcription-independent ...
P53 causes cells to enter apoptosis and disrupt further cell division therefore preventing that cell from becoming cancerous (16). In the majority of cancers it is the p53 pathway that has become mutated resulting in lack of ability to terminate dysfunctional cells.
p53, also known as Tumor protein P53, cellular tumor antigen p53 (UniProt name), or transformation-related protein 53 (TRP53) is a regulatory protein that is often mutated in human cancers. The p53 proteins (originally thought to be, and often spoken of as, a single protein) are crucial in vertebrates , where they prevent cancer formation. [ 5 ]
High-normal levels of the bile acid deoxycholic acid cause apoptosis in human colon cells, [56] but may also lead to colon cancer if repair and apoptotic defenses are insufficient. [57] Apoptosis serves as a safeguard mechanism against tumorigenesis. [58] It prevents the increased mutagenesis that excess DNA damage could cause, upon replication ...
Bax/Bak are believed to initiate apoptosis by forming a pore in the mitochondrial outer membrane that allows cytochrome c to escape into the cytoplasm and activate the pro-apoptotic caspase cascade. The anti-apoptotic Bcl-2 and Bcl-xL proteins inhibit cytochrome c release through the mitochondrial pore and also inhibit activation of the ...
In the field of genetics, a suicide gene is a gene that will cause a cell to kill itself through the process of apoptosis (programmed cell death). Activation of a suicide gene can cause death through a variety of pathways, but one important cellular "switch" to induce apoptosis is the p53 protein.
This suggests that p53 pathway could be effectively harnessed as a therapeutic intervention to trigger senescence and ultimately mitigate tumorigenesis. [4] p53 has been shown to have promising therapeutic relevance in an oncological context. In the 2007 Nature paper by Xue et al., RNAi was used to regulate endogenous p53 in a liver carcinoma ...