enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Exponentiation - Wikipedia

    en.wikipedia.org/wiki/Exponentiation

    For >, () = will also tend towards positive infinity with increasing , but towards negative infinity with decreasing . All graphs from the family of odd power functions have the general shape of y = c x 3 {\displaystyle y=cx^{3}} , flattening more in the middle as n {\displaystyle n} increases and losing all flatness there in the straight line ...

  3. Power of two - Wikipedia

    en.wikipedia.org/wiki/Power_of_two

    The only known powers of 2 with all digits even are 2^1 = 2, 2^2 = 4, 2^3 = 8, 2^6 = 64 and 2^11 = 2048. [12] The first 3 powers of 2 with all but last digit odd is 2^4 = 16, 2^5 = 32 and 2^9 = 512. The next such power of 2 of form 2^n should have n of at least 6 digits.

  4. Characterizations of the exponential function - Wikipedia

    en.wikipedia.org/wiki/Characterizations_of_the...

    Also, characterisations (1), (2), and (4) for apply directly for a complex number. Definition (3) presents a problem because there are non-equivalent paths along which one could integrate; but the equation of (3) should hold for any such path modulo 2 π i {\displaystyle 2\pi i} .

  5. Tetration - Wikipedia

    en.wikipedia.org/wiki/Tetration

    In general, if / < <, then x has two positive square super-roots between 0 and 1; and if >, then x has one positive square super-root greater than 1. If x is positive and less than e − 1 / e {\displaystyle e^{-1/e}} it does not have any real square super-roots, but the formula given above yields countably infinitely many complex ones for any ...

  6. Infinity - Wikipedia

    en.wikipedia.org/wiki/Infinity

    Some programming languages, such as Java [60] and J, [61] allow the programmer an explicit access to the positive and negative infinity values as language constants. These can be used as greatest and least elements , as they compare (respectively) greater than or less than all other values.

  7. 1 − 2 + 4 − 8 + ⋯ - ⋯ - Wikipedia

    en.wikipedia.org/wiki/1_%E2%88%92_2_%2B_4_%E2%88...

    Gottfried Leibniz considered the divergent alternating series 1 − 2 + 48 + 16 − ⋯ as early as 1673. He argued that by subtracting either on the left or on the right, one could produce either positive or negative infinity, and therefore both answers are wrong and the whole should be finite:

  8. Extended real number line - Wikipedia

    en.wikipedia.org/wiki/Extended_real_number_line

    [4] When dealing with both positive and negative extended real numbers, the expression / is usually left undefined, because, although it is true that for every real nonzero sequence that converges to 0, the reciprocal sequence / is eventually contained in every neighborhood of {,}, it is not true that the sequence / must itself converge to ...

  9. Aleph number - Wikipedia

    en.wikipedia.org/wiki/Aleph_number

    The aleph numbers differ from the infinity (∞) commonly found in algebra and calculus, in that the alephs measure the sizes of sets, while infinity is commonly defined either as an extreme limit of the real number line (applied to a function or sequence that "diverges to infinity" or "increases without bound"), or as an extreme point of the ...