Search results
Results from the WOW.Com Content Network
Strong duality is a condition in mathematical optimization in which the primal optimal objective and the dual optimal objective are equal. By definition, strong duality holds if and only if the duality gap is equal to 0.
The strong duality theorem says that if one of the two problems has an optimal solution, so does the other one and that the bounds given by the weak duality theorem are tight, i.e.: max x c T x = min y b T y. The strong duality theorem is harder to prove; the proofs usually use the weak duality theorem as a sub-routine.
The duality gap is zero if and only if strong duality holds. Otherwise the gap is strictly positive and weak duality holds. [5] In computational optimization, another "duality gap" is often reported, which is the difference in value between any dual solution and the value of a feasible but suboptimal iterate for the primal problem.
Farkas' lemma is the key result underpinning the linear programming duality and has played a central role in the development of mathematical optimization (alternatively, mathematical programming). It is used amongst other things in the proof of the Karush–Kuhn–Tucker theorem in nonlinear programming. [2]
For example, Desargues' theorem is self-dual in this sense under the standard duality in projective geometry. In mathematical contexts, duality has numerous meanings. [1] It has been described as "a very pervasive and important concept in (modern) mathematics" [2] and "an important general theme that has manifestations in almost every area of ...
In mathematics, Slater's condition (or Slater condition) is a sufficient condition for strong duality to hold for a convex optimization problem, named after Morton L. Slater. [1] Informally, Slater's condition states that the feasible region must have an interior point (see technical details below).
In mathematics, a duality, generally speaking, translates concepts, theorems or mathematical structures into other concepts, theorems or structures, in a one-to-one fashion, often (but not always) by means of an involution operation: if the dual of A is B, then the dual of B is A.
The idea of mathematical duality was first noticed as projective duality. There it appears as the idea of interchanging dimension k and codimension k+1 in propositions of projective geometry. A large number of duality theories have now been created in mathematics, ranging as far as optimization theory and theoretical physics.