enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. A Fistful of TOWs - Wikipedia

    en.wikipedia.org/wiki/A_Fistful_of_TOWs

    A Fistful of TOWs – TOW stands for "tube-launched, optically tracked, wire-guided missiles" [1] — is a set of rules designed for wargames with 6 mm miniatures at a scale of either 1" = 100 metres or 1 cm = 100 metres.

  3. Schönhage–Strassen algorithm - Wikipedia

    en.wikipedia.org/wiki/Schönhage–Strassen...

    The Schönhage–Strassen algorithm is based on the fast Fourier transform (FFT) method of integer multiplication. This figure demonstrates multiplying 1234 × 5678 = 7006652 using the simple FFT method. Base 10 is used in place of base 2 w for illustrative purposes.

  4. Fast-and-frugal trees - Wikipedia

    en.wikipedia.org/wiki/Fast-and-frugal_trees

    In categorization tasks with two options and m cues—also known as features or attributes—available for making such a decision, an FFT is defined as follows: A fast-and-frugal tree is a classification or a decision tree that has m+1 exits, with one exit for each of the first m −1 cues and two exits for the last cue.

  5. Fourier analysis - Wikipedia

    en.wikipedia.org/wiki/Fourier_analysis

    The discrete version of the Fourier transform (see below) can be evaluated quickly on computers using fast Fourier transform (FFT) algorithms. [ 8 ] In forensics, laboratory infrared spectrophotometers use Fourier transform analysis for measuring the wavelengths of light at which a material will absorb in the infrared spectrum.

  6. Bailey's FFT algorithm - Wikipedia

    en.wikipedia.org/wiki/Bailey's_FFT_algorithm

    The Bailey's FFT (also known as a 4-step FFT) is a high-performance algorithm for computing the fast Fourier transform (FFT). This variation of the Cooley–Tukey FFT algorithm was originally designed for systems with hierarchical memory common in modern computers (and was the first FFT algorithm in this so called "out of core" class).

  7. Cooley–Tukey FFT algorithm - Wikipedia

    en.wikipedia.org/wiki/Cooley–Tukey_FFT_algorithm

    The Cooley–Tukey algorithm, named after J. W. Cooley and John Tukey, is the most common fast Fourier transform (FFT) algorithm. It re-expresses the discrete Fourier transform (DFT) of an arbitrary composite size = in terms of N 1 smaller DFTs of sizes N 2, recursively, to reduce the computation time to O(N log N) for highly composite N (smooth numbers).

  8. Discrete Fourier transform - Wikipedia

    en.wikipedia.org/wiki/Discrete_Fourier_transform

    The procedure is sometimes referred to as zero-padding, which is a particular implementation used in conjunction with the fast Fourier transform (FFT) algorithm. The inefficiency of performing multiplications and additions with zero-valued "samples" is more than offset by the inherent efficiency of the FFT.

  9. Prime-factor FFT algorithm - Wikipedia

    en.wikipedia.org/wiki/Prime-factor_FFT_algorithm

    The prime-factor algorithm (PFA), also called the Good–Thomas algorithm (1958/1963), is a fast Fourier transform (FFT) algorithm that re-expresses the discrete Fourier transform (DFT) of a size N = N 1 N 2 as a two-dimensional N 1 ×N 2 DFT, but only for the case where N 1 and N 2 are relatively prime.