Search results
Results from the WOW.Com Content Network
A Fistful of TOWs – TOW stands for "tube-launched, optically tracked, wire-guided missiles" [1] — is a set of rules designed for wargames with 6 mm miniatures at a scale of either 1" = 100 metres or 1 cm = 100 metres. The rules for modern combat have specifically been designed to provide relatively fast play.
The Schönhage–Strassen algorithm is based on the fast Fourier transform (FFT) method of integer multiplication. This figure demonstrates multiplying 1234 × 5678 = 7006652 using the simple FFT method. Base 10 is used in place of base 2 w for illustrative purposes.
The Cooley–Tukey algorithm, named after J. W. Cooley and John Tukey, is the most common fast Fourier transform (FFT) algorithm. It re-expresses the discrete Fourier transform (DFT) of an arbitrary composite size = in terms of N 1 smaller DFTs of sizes N 2, recursively, to reduce the computation time to O(N log N) for highly composite N (smooth numbers).
where:. DFT N and IDFT N refer to the Discrete Fourier transform and its inverse, evaluated over N discrete points, and; L is customarily chosen such that N = L+M-1 is an integer power-of-2, and the transforms are implemented with the FFT algorithm, for efficiency.
The procedure is sometimes referred to as zero-padding, which is a particular implementation used in conjunction with the fast Fourier transform (FFT) algorithm. The inefficiency of performing multiplications and additions with zero-valued "samples" is more than offset by the inherent efficiency of the FFT.
The Bailey's FFT (also known as a 4-step FFT) is a high-performance algorithm for computing the fast Fourier transform (FFT). This variation of the Cooley–Tukey FFT algorithm was originally designed for systems with hierarchical memory common in modern computers (and was the first FFT algorithm in this so called "out of core" class).
Signal-flow graph connecting the inputs x (left) to the outputs y that depend on them (right) for a "butterfly" step of a radix-2 Cooley–Tukey FFT. This diagram resembles a butterfly (as in the morpho butterfly shown for comparison), hence the name, although in some countries it is also called the hourglass diagram.
An implementation in place produces a predictable, but highly unordered sequence of indices, for example for N=16 the final order of the 8 linear remainders is (0, 4, 2, 6, 1, 7, 3, 5). At the end of the recursion, for s = n -1 , there remain 2 n -1 linear polynomials encoding two Fourier coefficients X 0 and X 2 n -1 for the first and for the ...