Search results
Results from the WOW.Com Content Network
A triple bond in chemistry is a chemical bond between two atoms involving six bonding electrons instead of the usual two in a covalent single bond. Triple bonds are stronger than the equivalent single bonds or double bonds, with a bond order of three. The most common triple bond is in a nitrogen N 2 molecule; the second most common is that ...
This is due to its bonding, which is unique among the diatomic elements at standard conditions in that it has an N≡N triple bond. Triple bonds have short bond lengths (in this case, 109.76 pm) and high dissociation energies (in this case, 945.41 kJ/mol), and are thus very strong, explaining dinitrogen's low level of chemical reactivity. [28] [45]
Similar to carbon–carbon bonds, these bonds can form stable double bonds, as in imines; and triple bonds, such as nitriles. Bond lengths range from 147.9 pm for simple amines to 147.5 pm for C-N= compounds such as nitromethane to 135.2 pm for partial double bonds in pyridine to 115.8 pm for triple bonds as in nitriles. [2]
The less well-characterised ways involve dinitrogen donating electron pairs from the triple bond, either as a bridging ligand to two metal cations (μ, bis-η 2) or to just one (η 2). The fifth and unique method involves triple-coordination as a bridging ligand, donating all three electron pairs from the triple bond (μ 3-N 2).
The bond order itself is the number of electron pairs (covalent bonds) between two atoms. [3] For example, in diatomic nitrogen N≡N, the bond order between the two nitrogen atoms is 3 (triple bond). In acetylene H–C≡C–H, the bond order between the two carbon atoms is also 3, and the C–H bond order is 1 (single bond).
Nitrogen can be fixed by lightning converting nitrogen gas (N 2) and oxygen gas (O 2) in the atmosphere into NO x (nitrogen oxides). The N 2 molecule is highly stable and nonreactive due to the triple bond between the nitrogen atoms. [75] Lightning produces enough energy and heat to break this bond [75] allowing nitrogen atoms to react with ...
Thus, each sulfur atom is hexavalent or has valence 6, but has oxidation state +5. In the dioxygen molecule O 2, each oxygen atom has 2 valence bonds and so is divalent (valence 2), but has oxidation state 0. In acetylene H−C≡C−H, each carbon atom has 4 valence bonds (1 single bond with hydrogen atom and a triple bond with the other ...
Nitrogen gas (N 2) is unreactive because the atoms are held together by triple bonds. The Haber process relies on catalysts that accelerate the scission of these bonds. Two opposing considerations are relevant: the equilibrium position and the reaction rate. At room temperature, the equilibrium is in favor of ammonia, but the reaction does not ...