Search results
Results from the WOW.Com Content Network
Gravitational biology is the study of the effects gravity has on living organisms. Throughout the history of the Earth life has evolved to survive changing conditions, such as changes in the climate and habitat. However, one constant factor in evolution since life first began on Earth is the force of gravity.
Other examples of gravitropic mutants include those affecting the transport or response to the hormone auxin. [10] In addition to the information about gravitropism which such auxin-transport or auxin-response mutants provide, they have been instrumental in identifying the mechanisms governing the transport and cellular action of auxin as well ...
Gibbs–Donnan effect (biology) (physics) Gibbs–Thomson effect (petrology) (thermodynamics) Glass house effect (culture) (surveillance) Glasser effect (physics) Goos–Hänchen effect (optical phenomena) Great Salt Lake effect (natural history of Utah) Green-beard effect (evolution) (evolutionary biology) (game theory) (selection)
Examples of important situations involving g-forces include: The g-force acting on a stationary object resting on the Earth's surface is 1 g (upwards) and results from the resisting reaction of the Earth's surface bearing upwards equal to an acceleration of 1 g, and is equal and opposite to gravity. The number 1 is approximate, depending on ...
The normal force, for example, is responsible for the structural integrity of tables and floors as well as being the force that responds whenever an external force pushes on a solid object. An example of the normal force in action is the impact force on an object crashing into an immobile surface. [4]: ch.12 [5]
Diffusive forces are somewhat like mechanical tethering at the molecular level. Diffusive bonding occurs when species from one surface penetrate into an adjacent surface while still being bound to the phase of their surface of origin. One instructive example is that of polymer-on-polymer surfaces.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
In molecular physics and chemistry, the van der Waals force (sometimes van der Waals' force) is a distance-dependent interaction between atoms or molecules. Unlike ionic or covalent bonds, these attractions do not result from a chemical electronic bond; [2] they are comparatively weak and therefore more susceptible to disturbance. The van der ...