Search results
Results from the WOW.Com Content Network
In mathematics and statistics, a quantitative variable may be continuous or discrete if it is typically obtained by measuring or counting, respectively. [1] If it can take on two particular real values such that it can also take on all real values between them (including values that are arbitrarily or infinitesimally close together), the variable is continuous in that interval. [2]
Discrete time is often employed when empirical measurements are involved, because normally it is only possible to measure variables sequentially. For example, while economic activity actually occurs continuously, there being no moment when the economy is totally in a pause, it is only possible to measure economic activity discretely.
Example. A singular continuous measure. The Cantor distribution has a cumulative distribution function that is continuous but not absolutely continuous , and indeed its absolutely continuous part is zero: it is singular continuous.
Examples of distributions used to describe correlated random vectors are the multivariate normal distribution and multivariate t-distribution. In general, there may be arbitrary correlations between any elements and any others; however, this often becomes unmanageable above a certain size, requiring further restrictions on the correlated elements.
A discrete power-law distribution, the most famous example of which is the description of the frequency of words in the English language. The Zipf–Mandelbrot law is a discrete power law distribution which is a generalization of the Zipf distribution. Conway–Maxwell–Poisson distribution Poisson distribution Skellam distribution
In the discrete time case, if the planning horizon is finite, the problem can also be easily solved by dynamic programming. When the underlying process is determined by a family of (conditional) transition functions leading to a Markov family of transition probabilities, powerful analytical tools provided by the theory of Markov processes can ...
Note: Most subscribers have some, but not all, of the puzzles that correspond to the following set of solutions for their local newspaper. CROSSWORDS
ν sing is the singular continuous part; ν pp is the pure point part (a discrete measure). Second, absolutely continuous measures are classified by the Radon–Nikodym theorem, and discrete measures are easily understood. Hence (singular continuous measures aside), Lebesgue decomposition gives a very explicit description of measures.