Search results
Results from the WOW.Com Content Network
In mathematics, the Fibonacci sequence is a sequence in which each term is the sum of the two terms that precede it. Numbers that are part of the Fibonacci sequence are known as Fibonacci numbers , commonly denoted F n .
The Fibonacci sequence modulo m; A research for Fibonacci numbers; Fibonacci sequence starts with q, r modulo m; Johnson, Robert C., Fibonacci resources; on YouTube, a video with Dr. James Grime and the University of Nottingham
A Fibonacci sequence of order n is an integer sequence in which each sequence element is the sum of the previous elements (with the exception of the first elements in the sequence). The usual Fibonacci numbers are a Fibonacci sequence of order 2.
It began linking up to the Fibonacci sequence." The syllables Maynard sings in the first verse follow the first six numbers in the pattern, ascending and descending in the sequence 1-1-2-3-5-8-5-3. "Black (1), then (1), white are (2), all I see (3), in my infancy (5). Red and yellow then came to be (8), reaching out to me (5). Lets me see (3 ...
The Fibonacci sequence is frequently referenced in the 2001 book The Perfect Spiral by Jason S. Hornsby. A youthful Fibonacci is one of the main characters in the novel Crusade in Jeans (1973). He was left out of the 2006 movie version, however. The Fibonacci sequence and golden ratio are briefly described in John Fowles's 1985 novel A Maggot.
In the Fibonacci sequence, each number is the sum of the previous two numbers. Fibonacci omitted the "0" and first "1" included today and began the sequence with 1, 2, 3, ... . He carried the calculation up to the thirteenth place, the value 233, though another manuscript carries it to the next place, the value 377.
The sequence also has a variety of relationships with the Fibonacci numbers, like the fact that adding any two Fibonacci numbers two terms apart in the Fibonacci sequence results in the Lucas number in between. [3] The first few Lucas numbers are 2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, 322, 521, 843, 1364, 2207, 3571, 5778, 9349, ... .
The k-Wall–Sun–Sun primes can be explicitly defined as primes p such that p 2 divides the k-Fibonacci number (()), where F k (n) = U n (k, −1) is a Lucas sequence of the first kind with discriminant D = k 2 + 4 and () is the Pisano period of k-Fibonacci numbers modulo p. [15]