Search results
Results from the WOW.Com Content Network
A Fibonacci prime is a Fibonacci number that is prime. The first few are: [47] 2, 3, 5, 13, 89, 233, 1597, 28657, 514229, ... Fibonacci primes with thousands of digits have been found, but it is not known whether there are infinitely many. [48] F kn is divisible by F n, so, apart from F 4 = 3, any Fibonacci prime must have a prime index.
The n-Fibonacci constant is the ratio toward which adjacent -Fibonacci numbers tend; it is also called the n th metallic mean, and it is the only positive root of =. For example, the case of n = 1 {\displaystyle n=1} is 1 + 5 2 {\displaystyle {\frac {1+{\sqrt {5}}}{2}}} , or the golden ratio , and the case of n = 2 {\displaystyle n=2} is 1 + 2 ...
That is to say, the Fibonacci sequence is a divisibility sequence. F p is prime for 8 of the first 10 primes p; the exceptions are F 2 = 1 and F 19 = 4181 = 37 × 113. However, Fibonacci primes appear to become rarer as the index increases. F p is prime for only 26 of the 1229 primes p smaller than 10,000. [3]
Fibonacci was born around 1170 to Guglielmo, an Italian merchant and customs official. [3] Guglielmo directed a trading post in Bugia (Béjaïa), in modern-day Algeria. [16] Fibonacci travelled with him as a young boy, and it was in Bugia (Algeria) where he was educated that he learned about the Hindu–Arabic numeral system. [17] [7]
Fibonacci instead would write the same fraction to the left, i.e., . Fibonacci used a composite fraction notation in which a sequence of numerators and denominators shared the same fraction bar; each such term represented an additional fraction of the given numerator divided by the product of all the denominators below and to the right of it.
For generalized Fibonacci sequences (satisfying the same recurrence relation, but with other initial values, e.g. the Lucas numbers) the number of occurrences of 0 per cycle is 0, 1, 2, or 4. The ratio of the Pisano period of n and the number of zeros modulo n in the cycle gives the rank of apparition or Fibonacci entry point of n .
Dov Jarden proved that the Fibonomials appear as coefficients of an equation involving powers of consecutive Fibonacci numbers, namely Jarden proved that given any generalized Fibonacci sequence , that is, a sequence that satisfies = + for every , then
A digit sequence with rank r may be formed either by adding the digit 2 to a sequence with rank r − 2, or by adding the digit 1 to a sequence with rank r − 1.If f is the function that maps r to the number of different digit sequences of that rank, therefore, f satisfies the recurrence relation f (r) = f (r − 2) + f (r − 1) defining the Fibonacci numbers, but with slightly different ...