enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Fibonacci sequence - Wikipedia

    en.wikipedia.org/wiki/Fibonacci_sequence

    A Fibonacci prime is a Fibonacci number that is prime. The first few are: [47] 2, 3, 5, 13, 89, 233, 1597, 28657, 514229, ... Fibonacci primes with thousands of digits have been found, but it is not known whether there are infinitely many. [48] F kn is divisible by F n, so, apart from F 4 = 3, any Fibonacci prime must have a prime index.

  3. Generalizations of Fibonacci numbers - Wikipedia

    en.wikipedia.org/wiki/Generalizations_of...

    The n-Fibonacci constant is the ratio toward which adjacent -Fibonacci numbers tend; it is also called the n th metallic mean, and it is the only positive root of =. For example, the case of n = 1 {\displaystyle n=1} is 1 + 5 2 {\displaystyle {\frac {1+{\sqrt {5}}}{2}}} , or the golden ratio , and the case of n = 2 {\displaystyle n=2} is 1 + 2 ...

  4. Fibonacci prime - Wikipedia

    en.wikipedia.org/wiki/Fibonacci_prime

    That is to say, the Fibonacci sequence is a divisibility sequence. F p is prime for 8 of the first 10 primes p; the exceptions are F 2 = 1 and F 19 = 4181 = 37 × 113. However, Fibonacci primes appear to become rarer as the index increases. F p is prime for only 26 of the 1229 primes p smaller than 10,000. [3]

  5. Fibonacci - Wikipedia

    en.wikipedia.org/wiki/Fibonacci

    Fibonacci was born around 1170 to Guglielmo, an Italian merchant and customs official. [3] Guglielmo directed a trading post in Bugia (Béjaïa), in modern-day Algeria. [16] Fibonacci travelled with him as a young boy, and it was in Bugia (Algeria) where he was educated that he learned about the Hindu–Arabic numeral system. [17] [7]

  6. Liber Abaci - Wikipedia

    en.wikipedia.org/wiki/Liber_Abaci

    Fibonacci instead would write the same fraction to the left, i.e., . Fibonacci used a composite fraction notation in which a sequence of numerators and denominators shared the same fraction bar; each such term represented an additional fraction of the given numerator divided by the product of all the denominators below and to the right of it.

  7. Pisano period - Wikipedia

    en.wikipedia.org/wiki/Pisano_period

    For generalized Fibonacci sequences (satisfying the same recurrence relation, but with other initial values, e.g. the Lucas numbers) the number of occurrences of 0 per cycle is 0, 1, 2, or 4. The ratio of the Pisano period of n and the number of zeros modulo n in the cycle gives the rank of apparition or Fibonacci entry point of n .

  8. Fibonomial coefficient - Wikipedia

    en.wikipedia.org/wiki/Fibonomial_coefficient

    Dov Jarden proved that the Fibonomials appear as coefficients of an equation involving powers of consecutive Fibonacci numbers, namely Jarden proved that given any generalized Fibonacci sequence , that is, a sequence that satisfies = + for every , then

  9. Young–Fibonacci lattice - Wikipedia

    en.wikipedia.org/wiki/Young–Fibonacci_lattice

    A digit sequence with rank r may be formed either by adding the digit 2 to a sequence with rank r − 2, or by adding the digit 1 to a sequence with rank r − 1.If f is the function that maps r to the number of different digit sequences of that rank, therefore, f satisfies the recurrence relation f (r) = f (r − 2) + f (r − 1) defining the Fibonacci numbers, but with slightly different ...