Search results
Results from the WOW.Com Content Network
The Earth's average surface absolute temperature for the 1961–1990 period has been derived by spatial interpolation of average observed near-surface air temperatures from over the land, oceans and sea ice regions, with a best estimate of 14 °C (57.2 °F). [44] The estimate is uncertain, but probably lies within 0.5 °C of the true value. [44]
Average maximum yearly temperature is 28.7 °C and average minimum is 21.9 °C. The average temperature range is 5.7 °C only. Temperature variation throughout the year in Aracaju is very damped, with a standard deviation of 1.93 °C for the maximum temperature and 2.72 °C for the minimum temperature. [6]
is Earth's average albedo, measured to be 0.3. [11] [12] is Earth's average surface temperature, measured as about 288 K as of year 2020 [13] is the effective emissivity of Earth's combined surface and atmosphere (including clouds). It is a quantity between 0 and 1 that is calculated from the equilibrium to be about 0.61.
Total atmospheric mass is 5.1480 × 10 18 kg (1.13494 × 10 19 lb), [36] about 2.5% less than would be inferred from the average sea-level pressure and Earth's area of 51007.2 megahectares, this portion being displaced by Earth's mountainous terrain. Atmospheric pressure is the total weight of the air above unit area at the point where the ...
By far the best observed period is from 1850 to the present day, with coverage improving over time. Over this period the recent instrumental record, mainly based on direct thermometer readings, has approximately global coverage. It shows a general warming in global temperatures. Before this time various proxies must be used.
NASA scientists estimated that in 2024, Earth was about 2.65 degrees Fahrenheit (1.47 degrees Celsius) hotter than the average from the mid-19th century — a period from 1850 to 1900.
The temperature is initially distributed over a one-dimensional, one-unit-long interval (x = [0,1]) with insulated endpoints. The distribution approaches equilibrium over time. The behavior of temperature when the sides of a 1D rod are at fixed temperatures (in this case, 0.8 and 0 with initial Gaussian distribution).
A temperature gradient is a physical quantity that describes in which direction and at what rate the temperature changes the most rapidly around a particular location. The temperature spatial gradient is a vector quantity with dimension of temperature difference per unit length. The SI unit is kelvin per meter (K/m).