Search results
Results from the WOW.Com Content Network
In mathematics, particularly set theory, a finite set is a set that has a finite number of elements. Informally, a finite set is a set which one could in principle ...
A set may be finite or infinite, depending whether the number of its elements is finite or not. There is a unique set with no elements, called the empty set; a set with a single element is a singleton. Sets are ubiquitous in modern mathematics. Indeed, set theory, more specifically Zermelo–Fraenkel set theory, has been the standard way to ...
An abstract simplicial complex is a set family (consisting of finite sets) that is downward closed; that is, every subset of a set in is also in . A matroid is an abstract simplicial complex with an additional property called the augmentation property .
A set of real numbers (hollow and filled circles), a subset of (filled circles), and the infimum of . Note that for totally ordered finite sets, the infimum and the minimum are equal. A set A {\displaystyle A} of real numbers (blue circles), a set of upper bounds of A {\displaystyle A} (red diamond and circles), and the smallest such upper ...
Each set of elements has a least upper bound (their "join") and a greatest lower bound (their "meet"), so that it forms a lattice, and more specifically (for partitions of a finite set) it is a geometric and supersolvable lattice. [6] [7] The partition lattice of a 4-element set has 15 elements and is depicted in the Hasse diagram on the left.
In mathematics, a cardinal number, or cardinal for short, is what is commonly called the number of elements of a set. In the case of a finite set, its cardinal number, or cardinality is therefore a natural number.
Set theory is the branch of mathematics that studies sets, which are collections of objects, such as {blue, white, red} or the (infinite) set of all prime numbers. Partially ordered sets and sets with other relations have applications in several areas. In discrete mathematics, countable sets (including finite sets) are the main focus
Every set is a projective object in Set (assuming the axiom of choice). The finitely presentable objects in Set are the finite sets. Since every set is a direct limit of its finite subsets, the category Set is a locally finitely presentable category. If C is an arbitrary category, the contravariant functors from C to Set are often an important ...