Search results
Results from the WOW.Com Content Network
A simplicial 3-complex. In mathematics, a simplicial complex is a structured set composed of points, line segments, triangles, and their n-dimensional counterparts, called simplices, such that all the faces and intersections of the elements are also included in the set (see illustration).
An abstract simplicial complex (ASC) is family of sets that is closed under taking subsets (the subset of a set in the family is also a set in the family). Every abstract simplicial complex has a unique geometric realization in a Euclidean space as a geometric simplicial complex (GSC), where each set with k elements in the ASC is mapped to a (k-1)-dimensional simplex in the GSC.
The polyhedral surfaces discussed above are, in modern language, two-dimensional finite CW-complexes. (When only triangular faces are used, they are two-dimensional finite simplicial complexes.) In general, for any finite CW-complex, the Euler characteristic can be defined as the alternating sum
In algebraic topology, the Betti numbers are used to distinguish topological spaces based on the connectivity of n-dimensional simplicial complexes.For the most reasonable finite-dimensional spaces (such as compact manifolds, finite simplicial complexes or CW complexes), the sequence of Betti numbers is 0 from some point onward (Betti numbers vanish above the dimension of a space), and they ...
In topology, the Vietoris–Rips complex, also called the Vietoris complex or Rips complex, is a way of forming a topological space from distances in a set of points. It is an abstract simplicial complex that can be defined from any metric space M and distance δ by forming a simplex for every finite set of points that has diameter at most δ.
For the affine building, an apartment is a simplicial complex tessellating Euclidean space E n−1 by (n − 1)-dimensional simplices; while for a spherical building it is the finite simplicial complex formed by all (n − 1)! simplices with a given common vertex in the analogous tessellation in E n−2.
Via triangulation, one can assign a chain complex to topological spaces that arise from its simplicial complex and compute its simplicial homology. Compact spaces always admit finite triangulations and therefore their homology groups are finitely generated and only finitely many of them do not vanish.
The universal covering space of a finite connected simplicial complex X can also be described directly as a simplicial complex using edge-paths. Its vertices are pairs (w,γ) where w is a vertex of X and γ is an edge-equivalence class of paths from v to w.