Search results
Results from the WOW.Com Content Network
Polymerization, an anabolic pathway used to build macromolecules such as nucleic acids, proteins, and polysaccharides, uses condensation reactions to join monomers. [4] Macromolecules are created from smaller molecules using enzymes and cofactors. Use of ATP to drive the endergonic process of anabolism.
Coupled with an endergonic reaction of anabolism, the cell can synthesize new macromolecules using the original precursors of the anabolic pathway. [11] An example of a coupled reaction is the phosphorylation of fructose-6-phosphate to form the intermediate fructose-1,6-bisphosphate by the enzyme phosphofructokinase accompanied by the ...
The cell determines whether the amphibolic pathway will function as an anabolic or catabolic pathway by enzyme–mediated regulation at a transcriptional and post-transcriptional level. As many reactions in amphibolic pathways are freely reversible or can be bypassed, irreversible steps that facilitate their dual function are necessary.
Metabolic reactions may be categorized as catabolic—the breaking down of compounds (for example, the breaking down of glucose to pyruvate by cellular respiration); or anabolic—the building up of compounds (such as proteins, carbohydrates, lipids, and nucleic acids). Usually, catabolism releases energy, and anabolism consumes energy.
The TOR kinase complex has been known for having a role in the metabolism of plants. The TORC1 complex turns on when plants are living the proper environmental conditions to survive. Once activated, plant cells undergo particular anabolic reactions. These include plant development, translation of mRNA and the growth of cells within the plant.
While the pentose phosphate pathway does involve oxidation of glucose, its primary role is anabolic rather than catabolic. The pathway is especially important in red blood cells (erythrocytes). The reactions of the pathway were elucidated in the early 1950s by Bernard Horecker and co-workers. [2] [3] There are two distinct phases in the pathway.
Nucleotide synthesis is an anabolic mechanism generally involving the chemical reaction of phosphate, pentose sugar, and a nitrogenous base. Degradation of nucleic acids is a catabolic reaction and the resulting parts of the nucleotides or nucleobases can be salvaged to recreate new nucleotides.
NADP is a reducing agent in anabolic reactions like the Calvin cycle and lipid and nucleic acid syntheses. NADP exists in two forms: NADP+, the oxidized form, and NADPH, the reduced form. NADP is similar to nicotinamide adenine dinucleotide (NAD), but NADP has a phosphate group at the C-2′ position of the adenosyl