enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Empty sum - Wikipedia

    en.wikipedia.org/wiki/Empty_sum

    In mathematics, an empty sum, or nullary sum, [1] is a summation where the number of terms is zero. The natural way to extend non-empty sums [ 2 ] is to let the empty sum be the additive identity . Let a 1 {\displaystyle a_{1}} , a 2 {\displaystyle a_{2}} , a 3 {\displaystyle a_{3}} , ... be a sequence of numbers, and let

  3. Summation - Wikipedia

    en.wikipedia.org/wiki/Summation

    Summation of a sequence of only one summand results in the summand itself. Summation of an empty sequence (a sequence with no elements), by convention, results in 0. Very often, the elements of a sequence are defined, through a regular pattern, as a function of their place in the sequence. For simple patterns, summation of long sequences may be ...

  4. Iterated binary operation - Wikipedia

    en.wikipedia.org/wiki/Iterated_binary_operation

    If f has a unique left identity e, the definition of F l can be modified to operate on empty sequences by defining the value of F l on an empty sequence to be e (the previous base case on sequences of length 1 becomes redundant). Similarly, F r can be modified to operate on empty sequences if f has a unique right identity.

  5. Composition (combinatorics) - Wikipedia

    en.wikipedia.org/wiki/Composition_(combinatorics)

    Two sequences that differ in the order of their terms define different compositions of their sum, while they are considered to define the same integer partition of that number. Every integer has finitely many distinct compositions. Negative numbers do not have any compositions, but 0 has one composition, the empty sequence.

  6. Sequence - Wikipedia

    en.wikipedia.org/wiki/Sequence

    Informally, a sequence has a limit if the elements of the sequence become closer and closer to some value (called the limit of the sequence), and they become and remain arbitrarily close to , meaning that given a real number greater than zero, all but a finite number of the elements of the sequence have a distance from less than .

  7. Summation by parts - Wikipedia

    en.wikipedia.org/wiki/Summation_by_parts

    It may be used to prove Nicomachus's theorem that the sum of the first cubes equals the square of the sum of the first positive integers. [2] Summation by parts is frequently used to prove Abel's theorem and Dirichlet's test.

  8. Direct sum - Wikipedia

    en.wikipedia.org/wiki/Direct_sum

    An element in the direct product is an infinite sequence, such as (1,2,3,...) but in the direct sum, there is a requirement that all but finitely many coordinates be zero, so the sequence (1,2,3,...) would be an element of the direct product but not of the direct sum, while (1,2,0,0,0,...) would be an element of both.

  9. Arithmetic progression - Wikipedia

    en.wikipedia.org/wiki/Arithmetic_progression

    For instance, the sequence 5, 7, 9, 11, 13, 15, . . . is an arithmetic progression with a common difference of 2. If the initial term of an arithmetic progression is a 1 {\displaystyle a_{1}} and the common difference of successive members is d {\displaystyle d} , then the n {\displaystyle n} -th term of the sequence ( a n {\displaystyle a_{n ...