Ads
related to: ultimate tensile strength test
Search results
Results from the WOW.Com Content Network
The ultimate tensile strength of a material is an intensive property; therefore its value does not depend on the size of the test specimen.However, depending on the material, it may be dependent on other factors, such as the preparation of the specimen, the presence or otherwise of surface defects, and the temperature of the test environment and material.
Tensile testing, also known as tension testing, [1] is a fundamental materials science and engineering test in which a sample is subjected to a controlled tension until failure. Properties that are directly measured via a tensile test are ultimate tensile strength , breaking strength , maximum elongation and reduction in area. [ 2 ]
The ultimate strength is the maximum stress that a material can withstand before it breaks or weakens. [12] For example, the ultimate tensile strength (UTS) of AISI 1018 Steel is 440 MPa. In Imperial units, the unit of stress is given as lbf/in 2 or pounds-force per square inch. This unit is often abbreviated as psi.
It is obtained by gradually applying load to a test coupon and measuring the deformation, from which the stress and strain can be determined (see tensile testing). These curves reveal many of the properties of a material, such as the Young's modulus, the yield strength and the ultimate tensile strength.
There are no published standard values for shear strength like with tensile and yield strength. Instead, it is common for it to be estimated as 60% of the ultimate tensile strength. Shear strength can be measured by a torsion test where it is equal to their torsional strength. [4] [5]
It also corresponds to the “strength” (ultimate tensile stress), at least for metals that do neck (which covers the majority of “engineering” metals). On the other hand, the peak in a nominal stress-strain curve is commonly a fairly flat plateau, rather than a sharp maximum, so accurate assessment of the strain at the onset of necking ...
For iron, aluminium, and copper alloys, is typically 0.4 times the ultimate tensile strength. Maximum typical values for irons are 170 MPa (24 ksi), aluminums 130 MPa (19 ksi), and coppers 97 MPa (14 ksi). [2] Note that these values are for smooth "un-notched" test specimens.
This test is performed on a universal testing machine (tensile testing machine or tensile tester) with a three-point or four-point bend fixture. The main advantage of a three-point flexural test is the ease of the specimen preparation and testing.
Ads
related to: ultimate tensile strength test