Search results
Results from the WOW.Com Content Network
Radar Pulse Train. The carrier is an RF signal, typically of microwave frequencies, which is usually (but not always) modulated to allow the system to capture the required data. In simple ranging radars, the carrier will be pulse modulated and in continuous wave systems, such as Doppler radar, modulation may not be required.
The pulse-Doppler radar equation can be used to understand trade-offs between different design constraints, like power consumption, detection range, and microwave safety hazards. This is a very simple form of modeling that allows performance to be evaluated in a sterile environment.
Pulse-Doppler begins with coherent pulses transmitted through an antenna or transducer. There is no modulation on the transmit pulse. Each pulse is a perfectly clean slice of a perfect coherent tone. The coherent tone is produced by the local oscillator. There can be dozens of transmit pulses between the antenna and the reflector.
Non-laser light detection is utilized extensively in automated machine control systems (e.g. electric eyes controlling a garage door, conveyor sorting gates, etc.), and those that use pulse-rate detection and ranging are at heart, the same type of system as a radar—without the bells and whistles of the human interface.
The duty cycle for a pulsed radio frequency is the percent time the RF packet is on, 4.2% for this example ([0.042 ms × 1000 pulses divided by 1000 ms/s] × 100). The pulse packet form can be a square, triangle, sawtooth or sine wave. [1] In several applications of pulse radio frequency, such as radar, [2] times between pulses can be modulated.
The radar mile is the time it takes for a radar pulse to travel one nautical mile, reflect off a target, and return to the radar antenna. Since a nautical mile is defined as 1,852 m, then dividing this distance by the speed of light (299,792,458 m/s), and then multiplying the result by 2 yields a result of 12.36 μs in duration.
Pulse-Doppler radar sensors are therefore more suited for long-range detection, while FMCW radar sensors are more suited for short-range detection. Monopulse : A monopulse feed network, as shown in Fig. 2, increases the angular accuracy to a fraction of the beamwidth by comparing echoes, which originate from a single radiated pulse and which ...
In a "chirped" radar, the pulse is allowed to be much longer. A longer pulse allows more energy to be emitted, and hence received, but usually hinders range resolution. But in a chirped radar, this longer pulse also has a frequency shift during the pulse (hence the chirp or frequency shift).