enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cardinal number - Wikipedia

    en.wikipedia.org/wiki/Cardinal_number

    A bijective function, f: X → Y, from set X to set Y demonstrates that the sets have the same cardinality, in this case equal to the cardinal number 4. Aleph-null, the smallest infinite cardinal. In mathematics, a cardinal number, or cardinal for short, is what is commonly called the number of elements of a set.

  3. Cardinality - Wikipedia

    en.wikipedia.org/wiki/Cardinality

    Two sets have the same cardinality if there exists a bijection (a.k.a., one-to-one correspondence) from ⁠ ⁠ to ⁠ ⁠, [10] that is, a function from ⁠ ⁠ to ⁠ ⁠ that is both injective and surjective.

  4. Cardinality (data modeling) - Wikipedia

    en.wikipedia.org/wiki/Cardinality_(data_modeling)

    One-to-many: order ←→ line item: 1: 1..* or + An order contains at least one item Many-to-one: person ←→ birthplace: 1..* or + 1: Many people can be born in the same place, but 1 person can only be born in 1 birthplace Many-to-many: course ←→ student: 1..* or + 1..* or + Students follow various courses Many-to-many (optional on both ...

  5. One-to-many (data model) - Wikipedia

    en.wikipedia.org/wiki/One-to-many_(data_model)

    For example, take a car and an owner of the car. The car can only be owned by one owner at a time or not owned at all, and an owner could own zero, one, or multiple cars. One owner could have many cars, one-to-many. In a relational database, a one-to-many relationship exists when one record is related to many records of another table. A one-to ...

  6. Set-theoretic definition of natural numbers - Wikipedia

    en.wikipedia.org/wiki/Set-theoretic_definition...

    The simplest way to introduce cardinals is to add a primitive notion, Card(), and an axiom of cardinality to ZF set theory (without axiom of choice). [2] Axiom of cardinality: The sets A and B are equinumerous if and only if Card(A) = Card(B)

  7. Cardinal function - Wikipedia

    en.wikipedia.org/wiki/Cardinal_function

    The most frequently used cardinal function is the function that assigns to a set A its cardinality, denoted by |A|. Aleph numbers and beth numbers can both be seen as cardinal functions defined on ordinal numbers. Cardinal arithmetic operations are examples of functions from cardinal numbers (or pairs of them) to cardinal numbers.

  8. Aleph number - Wikipedia

    en.wikipedia.org/wiki/Aleph_number

    They were introduced by the mathematician Georg Cantor [1] and are named after the symbol he used to denote them, the Hebrew letter aleph (ℵ). [2] [a] The cardinality of the natural numbers is ℵ 0 (read aleph-nought, aleph-zero, or aleph-null), the next larger cardinality of a well-ordered set is aleph-one ℵ 1, then ℵ 2 and so on.

  9. Glossary of mathematical symbols - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_mathematical...

    A mathematical symbol is a figure or a combination of figures that is used to represent a mathematical object, an action on mathematical objects, a relation between mathematical objects, or for structuring the other symbols that occur in a formula. As formulas are entirely constituted with symbols of various types, many symbols are needed for ...