enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Laplace's equation - Wikipedia

    en.wikipedia.org/wiki/Laplace's_equation

    In mathematics and physics, Laplace's equation is a second-order partial differential equation named after Pierre-Simon Laplace, who first studied its properties.This is often written as = or =, where = = is the Laplace operator, [note 1] is the divergence operator (also symbolized "div"), is the gradient operator (also symbolized "grad"), and (,,) is a twice-differentiable real-valued function.

  3. Laplace operator - Wikipedia

    en.wikipedia.org/wiki/Laplace_operator

    The left-hand side of this equation is the Laplace operator, and the entire equation Δu = 0 is known as Laplace's equation. Solutions of the Laplace equation, i.e. functions whose Laplacian is identically zero, thus represent possible equilibrium densities under diffusion.

  4. Pierre-Simon Laplace - Wikipedia

    en.wikipedia.org/wiki/Pierre-Simon_Laplace

    Laplace's equation in spherical coordinates, such as are used for mapping the sky, can be simplified, using the method of separation of variables into a radial part, depending solely on distance from the centre point, and an angular or spherical part. The solution to the spherical part of the equation can be expressed as a series of Laplace's ...

  5. Laplace transform - Wikipedia

    en.wikipedia.org/wiki/Laplace_transform

    In mathematics, the Laplace transform, named after Pierre-Simon Laplace (/ l ə ˈ p l ɑː s /), is an integral transform that converts a function of a real variable (usually , in the time domain) to a function of a complex variable (in the complex-valued frequency domain, also known as s-domain, or s-plane).

  6. Young–Laplace equation - Wikipedia

    en.wikipedia.org/wiki/Young–Laplace_equation

    In physics, the Young–Laplace equation (/ l ə ˈ p l ɑː s /) is an algebraic equation that describes the capillary pressure difference sustained across the interface between two static fluids, such as water and air, due to the phenomenon of surface tension or wall tension, although use of the latter is only applicable if assuming that the wall is very thin.

  7. Potential theory - Wikipedia

    en.wikipedia.org/wiki/Potential_theory

    An important topic in potential theory is the study of the local behavior of harmonic functions. Perhaps the most fundamental theorem about local behavior is the regularity theorem for Laplace's equation, which states that harmonic functions are analytic. There are results which describe the local structure of level sets of harmonic functions.

  8. Poisson's equation - Wikipedia

    en.wikipedia.org/wiki/Poisson's_equation

    Poisson's equation is =, where is the Laplace operator, and and are real or complex-valued functions on a manifold.Usually, is given, and is sought. When the manifold is Euclidean space, the Laplace operator is often denoted as ∇ 2, and so Poisson's equation is frequently written as =.

  9. Harmonic function - Wikipedia

    en.wikipedia.org/wiki/Harmonic_function

    A function (or, more generally, a distribution) is weakly harmonic if it satisfies Laplace's equation = in a weak sense (or, equivalently, in the sense of distributions). A weakly harmonic function coincides almost everywhere with a strongly harmonic function, and is in particular smooth.