Search results
Results from the WOW.Com Content Network
The process of osmosis over a semipermeable membrane.The blue dots represent particles driving the osmotic gradient. Osmosis (/ ɒ z ˈ m oʊ s ɪ s /, US also / ɒ s-/) [1] is the spontaneous net movement or diffusion of solvent molecules through a selectively-permeable membrane from a region of high water potential (region of lower solute concentration) to a region of low water potential ...
Multicomponent diffusion is diffusion in mixtures, and diffusiophoresis is the special case where we are interested in the movement of one species that is usually a colloidal particle, in a gradient of a much smaller species, such as dissolved salt such as sodium chloride in water. or a miscible liquid, such as ethanol in water.
The concept of diffusion is widely used in many fields, including physics (particle diffusion), chemistry, biology, sociology, economics, statistics, data science, and finance (diffusion of people, ideas, data and price values). The central idea of diffusion, however, is common to all of these: a substance or collection undergoing diffusion ...
Diffusion is of fundamental importance in many disciplines of physics, chemistry, and biology. Some example applications of diffusion: Sintering to produce solid materials (powder metallurgy, production of ceramics) Chemical reactor design; Catalyst design in chemical industry; Steel can be diffused (e.g., with carbon or nitrogen) to modify its ...
Osmoregulation is the active regulation of the osmotic pressure of an organism's body fluids, detected by osmoreceptors, to maintain the homeostasis of the organism's water content; that is, it maintains the fluid balance and the concentration of electrolytes (salts in solution which in this case is represented by body fluid) to keep the body fluids from becoming too diluted or concentrated.
With respect to molecular diffusion, dispersion occurs as a result of an unequal concentration of the introduced material throughout the bulk medium. When the dispersed material is first introduced into the bulk medium, the region at which it is introduced then has a higher concentration of that material than any other point in the bulk.
Fick's first law relates the diffusive flux to the gradient of the concentration. It postulates that the flux goes from regions of high concentration to regions of low concentration, with a magnitude that is proportional to the concentration gradient (spatial derivative), or in simplistic terms the concept that a solute will move from a region of high concentration to a region of low ...
Non-penetrating solutes cannot cross the cell membrane; therefore, the movement of water across the cell membrane (i.e., osmosis) must occur for the solutions to reach equilibrium. A solution can be both hyperosmotic and isotonic. [2]