Search results
Results from the WOW.Com Content Network
Nassi–Shneiderman diagrams are only rarely used for formal programming. Their abstraction level is close to structured program code and modifications require the whole diagram to be redrawn, but graphic editors removed that limitation. They clarify algorithms and high-level designs, which make them useful in teaching.
Structured programming theorists gained a major ally in the 1970s after IBM researcher Harlan Mills applied his interpretation of structured programming theory to the development of an indexing system for The New York Times research file. The project was a great engineering success, and managers at other companies cited it in support of ...
The structured program theorem, also called the Böhm–Jacopini theorem, [1] [2] is a result in programming language theory. It states that a class of control-flow graphs (historically called flowcharts in this context) can compute any computable function if it combines subprograms in only three specific ways ( control structures ).
A programming paradigm is a relatively high-level way to conceptualize and structure the implementation of a computer program. A programming language can be classified as supporting one or more paradigms. [1] Paradigms are separated along and described by different dimensions of programming.
The fork–join model from the 1960s, embodied by multiprocessing tools like OpenMP, is an early example of a system ensuring all threads have completed before exit.. However, Smith argues that this model is not true structured concurrency as the programming language is unaware of the joining behavior, and is thus unable to enforce
Methods on objects are functions attached to the object's class; the syntax instance. method (argument) is, for normal methods and functions, syntactic sugar for Class. method (instance, argument). Python methods have an explicit self parameter to access instance data, in contrast to the implicit self (or this) in some other object-oriented ...
The Art of Computer Programming (TAOCP) is a comprehensive monograph written by the computer scientist Donald Knuth presenting programming algorithms and their analysis. Volumes 1–5 are intended to represent the central core of computer programming for sequential machines.
The structured program theorem proved that the goto statement is not necessary to write programs that can be expressed as flow charts; some combination of the three programming constructs of sequence, selection/choice, and repetition/iteration are sufficient for any computation that can be performed by a Turing machine, with the caveat that ...