enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Steiner tree problem - Wikipedia

    en.wikipedia.org/wiki/Steiner_tree_problem

    A series of papers provided approximation algorithms for the minimum Steiner tree problem with approximation ratios that improved upon the 2 − 2/t ratio. This sequence culminated with Robins and Zelikovsky's algorithm in 2000 which improved the ratio to 1.55 by iteratively improving upon the minimum cost terminal spanning tree.

  3. Rectilinear Steiner tree - Wikipedia

    en.wikipedia.org/wiki/Rectilinear_Steiner_tree

    The RSMT is an NP-hard problem, and as with other NP-hard problems, common approaches to tackle it are approximate algorithms, heuristic algorithms, and separation of efficiently solvable special cases. An overview of the approaches to the problem may be found in the 1992 book by Hwang, Richards and Winter, The Steiner Tree Problem. [3]

  4. List of NP-complete problems - Wikipedia

    en.wikipedia.org/wiki/List_of_NP-complete_problems

    Steiner tree, or Minimum spanning tree for a subset of the vertices of a graph. [2] (The minimum spanning tree for an entire graph is solvable in polynomial time.) Modularity maximization [5] Monochromatic triangle [3]: GT6 Pathwidth, [6] or, equivalently, interval thickness, and vertex separation number [7] Rank coloring; k-Chinese postman

  5. Alexander Zelikovsky - Wikipedia

    en.wikipedia.org/wiki/Alexander_Zelikovsky

    He is known for an approximation algorithm for the minimum Steiner tree problem with an approximation ratio 1.55, [1] widely cited by his peers [2] and also widely held in libraries. [ 3 ] References

  6. Steiner point (computational geometry) - Wikipedia

    en.wikipedia.org/wiki/Steiner_point...

    The name of these points comes from the Steiner tree problem, named after Jakob Steiner, in which the goal is to connect the input points by a network of minimum total length. If the input points alone are used as endpoints of the network edges, then the shortest network is their minimum spanning tree. However, shorter networks can often be ...

  7. Wiener connector - Wikipedia

    en.wikipedia.org/wiki/Wiener_connector

    In combinatorial optimization, the minimum Wiener connector problem is the problem of finding the minimum Wiener connector. It can be thought of as a version of the classic Steiner tree problem (one of Karp's 21 NP-complete problems), where instead of minimizing the size of the tree, the objective is to minimize the distances in the subgraph ...

  8. Ding-Zhu Du - Wikipedia

    en.wikipedia.org/wiki/Ding-Zhu_Du

    Ding-Zhu Du (born May 21, 1948) is a Professor in the Department of Computer Science at The University of Texas at Dallas. [1] He is known for his research on the Euclidean minimum Steiner trees, [2] including an attempted proof of Gilbert–Pollak conjecture on the Steiner ratio, and the existence of a polynomial-time heuristic with a performance ratio bigger than the Steiner ratio.

  9. Combinatorial optimization - Wikipedia

    en.wikipedia.org/wiki/Combinatorial_optimization

    A minimum spanning tree of a weighted planar graph.Finding a minimum spanning tree is a common problem involving combinatorial optimization. Combinatorial optimization is a subfield of mathematical optimization that consists of finding an optimal object from a finite set of objects, [1] where the set of feasible solutions is discrete or can be reduced to a discrete set.