enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Numerical solution of the convection–diffusion equation

    en.wikipedia.org/wiki/Numerical_solution_of_the...

    This article describes how to use a computer to calculate an approximate numerical solution of the discretized equation, in a time-dependent situation. In order to be concrete, this article focuses on heat flow, an important example where the convection–diffusion equation applies. However, the same mathematical analysis works equally well to ...

  3. Finite volume method for three-dimensional diffusion problem

    en.wikipedia.org/wiki/Finite_volume_method_for...

    Finite volume method (FVM) is a numerical method. FVM in computational fluid dynamics is used to solve the partial differential equation which arises from the physical conservation law by using discretisation. Convection is always followed by diffusion and hence where convection is considered we have to consider combine effect of convection and ...

  4. Convection–diffusion equation - Wikipedia

    en.wikipedia.org/wiki/Convectiondiffusion...

    The convection–diffusion equation can be derived in a straightforward way [4] from the continuity equation, which states that the rate of change for a scalar quantity in a differential control volume is given by flow and diffusion into and out of that part of the system along with any generation or consumption inside the control volume: + =, where j is the total flux and R is a net ...

  5. Finite volume method for two dimensional diffusion problem

    en.wikipedia.org/wiki/Finite_volume_method_for...

    The methods used for solving two dimensional Diffusion problems are similar to those used for one dimensional problems. The general equation for steady diffusion can be easily derived from the general transport equation for property Φ by deleting transient and convective terms [1]

  6. Upwind differencing scheme for convection - Wikipedia

    en.wikipedia.org/wiki/Upwind_differencing_scheme...

    The upwind differencing scheme is a method used in numerical methods in computational fluid dynamics for convection–diffusion problems. This scheme is specific for Peclet number greater than 2 or less than −2

  7. Hybrid difference scheme - Wikipedia

    en.wikipedia.org/wiki/Hybrid_difference_scheme

    The hybrid difference scheme [1] [2] is a method used in the numerical solution for convection–diffusion problems. It was introduced by Spalding (1970). It is a combination of central difference scheme and upwind difference scheme as it exploits the favorable properties of both of these schemes. [3] [4]

  8. Central differencing scheme - Wikipedia

    en.wikipedia.org/wiki/Central_differencing_scheme

    The right side of the convection-diffusion equation, which basically highlights the diffusion terms, can be represented using central difference approximation. To simplify the solution and analysis, linear interpolation can be used logically to compute the cell face values for the left side of this equation, which is nothing but the convective ...

  9. Finite volume method for one-dimensional steady state diffusion

    en.wikipedia.org/wiki/Finite_volume_method_for...

    Solution of equations Discretized equation must be set up at each of the nodal points in order to solve the problem. The resulting system of linear algebraic equations Linear equation can then be solved to obtain ϕ {\displaystyle \phi } at the nodal points.