Search results
Results from the WOW.Com Content Network
Face recognition, classification 2011 [104] Zhao, G. et al. BU-3DFE neutral face, and 6 expressions: anger, happiness, sadness, surprise, disgust, fear (4 levels). 3D images extracted. None. 2500 Images, text Facial expression recognition, classification 2006 [105] Binghamton University: Face Recognition Grand Challenge Dataset
FaceNet is a facial recognition system developed by Florian Schroff, Dmitry Kalenichenko and James Philbina, a group of researchers affiliated with Google.The system was first presented at the 2015 IEEE Conference on Computer Vision and Pattern Recognition. [1]
Automatic face detection with OpenCV. Face detection is a computer technology being used in a variety of applications that identifies human faces in digital images. [1] Face detection also refers to the psychological process by which humans locate and attend to faces in a visual scene.
Objects detected with OpenCV's Deep Neural Network module (dnn) by using a YOLOv3 model trained on COCO dataset capable to detect objects of 80 common classes. Object detection is a computer technology related to computer vision and image processing that deals with detecting instances of semantic objects of a certain class (such as humans, buildings, or cars) in digital images and videos. [1]
Facial recognition software at a US airport Automatic ticket gate with face recognition system in Osaka Metro Morinomiya Station. A facial recognition system [1] is a technology potentially capable of matching a human face from a digital image or a video frame against a database of faces.
The two Harvard students who put facial recognition AI in Meta's Ray-Ban glasses have big ideas. The duo, AnhPhu Nguyen and Caine Ardayfio, are known for their innovative tech projects.
List of GitHub repositories of the project: Build Lab Team This data is not pre-processed List of GitHub repositories of the project: Terraform IBM Modules This data is not pre-processed List of GitHub repositories of the project: Cloud Schematics This data is not pre-processed List of GitHub repositories of the project: OCP Power Demos
The Viola–Jones object detection framework is a machine learning object detection framework proposed in 2001 by Paul Viola and Michael Jones. [1] [2] It was motivated primarily by the problem of face detection, although it can be adapted to the detection of other object classes.