enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Inflection point - Wikipedia

    en.wikipedia.org/wiki/Inflection_point

    A rising point of inflection is a point where the derivative is positive on both sides of the point; in other words, it is an inflection point near which the function is increasing. For a smooth curve given by parametric equations , a point is an inflection point if its signed curvature changes from plus to minus or from minus to plus, i.e ...

  3. Tangent - Wikipedia

    en.wikipedia.org/wiki/Tangent

    A point where the tangent (at this point) crosses the curve is called an inflection point. Circles, parabolas, hyperbolas and ellipses do not have any inflection point, but more complicated curves do have, like the graph of a cubic function, which has exactly one inflection point, or a sinusoid, which has two inflection points per each period ...

  4. Cusp (singularity) - Wikipedia

    en.wikipedia.org/wiki/Cusp_(singularity)

    A rhamphoid cusp (from Greek 'beak-like') denoted originally a cusp such that both branches are on the same side of the tangent, such as for the curve of equation = As such a singularity is in the same differential class as the cusp of equation x 2 − y 5 = 0 , {\displaystyle x^{2}-y^{5}=0,} which is a singularity of type A 4 , the term has ...

  5. Dual curve - Wikipedia

    en.wikipedia.org/wiki/Dual_curve

    The black curve has no singularities but has four distinguished points: the two top-most points correspond to the node (double point), as they both have the same tangent line, hence map to the same point in the dual curve, while the two inflection points correspond to the cusps, since the tangent lines first go one way then the other (slope ...

  6. Curve fitting - Wikipedia

    en.wikipedia.org/wiki/Curve_fitting

    Low-order polynomials tend to be smooth and high order polynomial curves tend to be "lumpy". To define this more precisely, the maximum number of inflection points possible in a polynomial curve is n-2, where n is the order of the polynomial equation. An inflection point is a location on the curve where it switches from a positive radius to ...

  7. Contact (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Contact_(mathematics)

    The point of osculation is also called the double cusp. Contact is a geometric notion; it can be defined algebraically as a valuation. One speaks also of curves and geometric objects having k-th order contact at a point: this is also called osculation (i.e. kissing), generalising the property of being tangent. (Here the derivatives are ...

  8. Curve sketching - Wikipedia

    en.wikipedia.org/wiki/Curve_sketching

    An x value where the y value of the red, or the blue, curve vanishes (becomes 0) gives rise to a local extremum (marked "HP", "TP"), or an inflection point ("WP"), of the black curve, respectively. In geometry , curve sketching (or curve tracing ) are techniques for producing a rough idea of overall shape of a plane curve given its equation ...

  9. Frenet–Serret formulas - Wikipedia

    en.wikipedia.org/wiki/Frenet–Serret_formulas

    A space curve; the vectors T, N, B; and the osculating plane spanned by T and N. In differential geometry, the Frenet–Serret formulas describe the kinematic properties of a particle moving along a differentiable curve in three-dimensional Euclidean space, or the geometric properties of the curve itself irrespective of any motion.