Search results
Results from the WOW.Com Content Network
The slope field can be defined for the following type of differential equations y ′ = f ( x , y ) , {\displaystyle y'=f(x,y),} which can be interpreted geometrically as giving the slope of the tangent to the graph of the differential equation's solution ( integral curve ) at each point ( x , y ) as a function of the point coordinates.
The tangent plane to a surface at a given point p is defined in an analogous way to the tangent line in the case of curves. It is the best approximation of the surface by a plane at p , and can be obtained as the limiting position of the planes passing through 3 distinct points on the surface close to p as these points converge to p .
The vertical deviation of a point A on an elastic curve with respect to the tangent which is extended from another point B equals the moment of the area under the M/EI diagram between those two points (A and B). This moment is computed about point A where the deviation from B to A is to be determined.
Let Xx + Yy + Zz = 0 be the equation of a line, with (X, Y, Z) being designated its line coordinates in a dual projective plane. The condition that the line is tangent to the curve can be expressed in the form F(X, Y, Z) = 0 which is the tangential equation of the curve. At a point (p, q, r) on the curve, the tangent is given by
For a smooth curve given by parametric equations, a point is an inflection point if its signed curvature changes from plus to minus or from minus to plus, i.e., changes sign. For a smooth curve which is a graph of a twice differentiable function, an inflection point is a point on the graph at which the second derivative has an isolated zero and ...
A flow is a process in which the points of a space continuously change their locations or properties over time. More specifically, in a one-dimensional geometric flow such as the curve-shortening flow, the points undergoing the flow belong to a curve, and what changes is the shape of the curve, its embedding into the Euclidean plane determined by the locations of each of its points. [2]
Illustration of tangential and normal components of a vector to a surface. In mathematics, given a vector at a point on a curve, that vector can be decomposed uniquely as a sum of two vectors, one tangent to the curve, called the tangential component of the vector, and another one perpendicular to the curve, called the normal component of the vector.
In mathematics, a tangent vector is a vector that is tangent to a curve or surface at a given point. Tangent vectors are described in the differential geometry of curves in the context of curves in R n. More generally, tangent vectors are elements of a tangent space of a differentiable manifold. Tangent vectors can also be described in terms of ...