Search results
Results from the WOW.Com Content Network
In geometry, the rhombic dodecahedron is a convex polyhedron with 12 congruent rhombic faces. It has 24 edges, and 14 vertices of 2 types. As a Catalan solid, it is the dual polyhedron of the cuboctahedron. As a parallelohedron, the rhombic dodecahedron can be used to tesselate its copies in space creating a rhombic dodecahedral honeycomb.
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Donate; Pages for logged out editors learn more
This image is a derivative work of the following images: File:Rhombic_dodecahedra.jpg licensed with Cc-by-sa-3.0-migrated, GFDL 2009-11-20T02:22:01Z SharkD 256x256 (11318 Bytes) Reverted to version as of 16:51, 20 March 2006 ...
The uploader of this file has agreed to the Wikimedia Foundation 3D patent license: This file and any 3D objects depicted in the file are both my own work. I hereby grant to each user, maker, or distributor of the object depicted in the file a worldwide, royalty-free, fully-paid-up, nonexclusive, irrevocable and perpetual license at no additional cost under any patent or patent application I ...
Any parallelepiped tessellates Euclidean 3-space, as do the five parallelohedra including the cube, hexagonal prism, truncated octahedron, and rhombic dodecahedron. Other space-filling polyhedra include the plesiohedra and stereohedra , polyhedra whose tilings have symmetries taking every tile to every other tile, including the gyrobifastigium ...
In geometry, the first stellation of the rhombic dodecahedron is a self-intersecting polyhedron with 12 faces, each of which is a non-convex hexagon. It is a stellation of the rhombic dodecahedron and has the same outer shell and the same visual appearance as two other shapes: a solid, Escher's solid, with 48 triangular faces, and a polyhedral compound of three flattened octahedra with 24 ...
The vertices with the obtuse rhombic face angles have 4 cells. The vertices with the acute rhombic face angles have 6 cells. The rhombic dodecahedron can be twisted on one of its hexagonal cross-sections to form a trapezo-rhombic dodecahedron, which is the cell of a somewhat similar tessellation, the Voronoi diagram of hexagonal close-packing.
This is an indexed list of the uniform and stellated polyhedra from the book Polyhedron Models, by Magnus Wenninger.. The book was written as a guide book to building polyhedra as physical models.