Search results
Results from the WOW.Com Content Network
In the base −2 representation, a signed number is represented using a number system with base −2. In conventional binary number systems, the base, or radix, is 2; thus the rightmost bit represents 2 0, the next bit represents 2 1, the next bit 2 2, and so on. However, a binary number system with base −2 is also possible.
Signed-digit representation can be used to accomplish fast addition of integers because it can eliminate chains of dependent carries. [1] In the binary numeral system, a special case signed-digit representation is the non-adjacent form, which can offer speed benefits with minimal space overhead.
For example, a two's complement signed 16-bit integer can hold the values −32768 to 32767 inclusively, while an unsigned 16 bit integer can hold the values 0 to 65535. For this sign representation method, the leftmost bit ( most significant bit ) denotes whether the value is negative (0 for positive or zero, 1 for negative).
Two's complement is the most common method of representing signed (positive, negative, and zero) integers on computers, [1] and more generally, fixed point binary values. Two's complement uses the binary digit with the greatest value as the sign to indicate whether the binary number is positive or negative; when the most significant bit is 1 the number is signed as negative and when the most ...
If errors in representation and computation are more important than the speed of conversion to and from display, a scaled binary representation may be used, which stores a decimal number as a binary-encoded integer and a binary-encoded signed decimal exponent. For example, 0.2 can be represented as 2 × 10 −1.
To convert a hexadecimal number into its binary equivalent, simply substitute the corresponding binary digits: 3A 16 = 0011 1010 2 E7 16 = 1110 0111 2. To convert a binary number into its hexadecimal equivalent, divide it into groups of four bits. If the number of bits isn't a multiple of four, simply insert extra 0 bits at the left (called ...
In a move or convert operation, zero extension refers to setting the high bits of the destination to zero, rather than setting them to a copy of the most significant bit of the source. If the source of the operation is an unsigned number, then zero extension is usually the correct way to move it to a larger field while preserving its numeric ...
A simple arithmetic calculator was first included with Windows 1.0. [5]In Windows 3.0, a scientific mode was added, which included exponents and roots, logarithms, factorial-based functions, trigonometry (supports radian, degree and gradians angles), base conversions (2, 8, 10, 16), logic operations, statistical functions such as single variable statistics and linear regression.