Ads
related to: solving problems on properties of parallelogram
Search results
Results from the WOW.Com Content Network
Vectors involved in the parallelogram law. In a normed space, the statement of the parallelogram law is an equation relating norms: ‖ ‖ + ‖ ‖ = ‖ + ‖ + ‖ ‖,.. The parallelogram law is equivalent to the seemingly weaker statement: ‖ ‖ + ‖ ‖ ‖ + ‖ + ‖ ‖, because the reverse inequality can be obtained from it by substituting (+) for , and () for , and then simplifying.
The Varignon parallelogram is a rectangle if and only if the diagonals of the quadrilateral are perpendicular, that is, if the quadrilateral is an orthodiagonal quadrilateral. [6]: p. 14 [7]: p. 169 For a self-crossing quadrilateral, the Varignon parallelogram can degenerate to four collinear points, forming a line segment traversed twice.
The base pairs form a parallelogram with half the area of the quadrilateral, A q, as the sum of the areas of the four large triangles, A l is 2 A q (each of the two pairs reconstructs the quadrilateral) while that of the small triangles, A s is a quarter of A l (half linear dimensions yields quarter area), and the area of the parallelogram is A ...
The theorem of the gnomon can be used to construct a new parallelogram or rectangle of equal area to a given parallelogram or rectangle by the means of straightedge and compass constructions. This also allows the representation of a division of two numbers in geometrical terms, an important feature to reformulate geometrical problems in ...
A property of Euclidean spaces is the parallelogram property of vectors: If two segments are equipollent, then they form two sides of a parallelogram: If a given vector holds between a and b, c and d, then the vector which holds between a and c is the same as that which holds between b and d.
The Jacobian at a point gives the best linear approximation of the distorted parallelogram near that point (right, in translucent white), and the Jacobian determinant gives the ratio of the area of the approximating parallelogram to that of the original square. If m = n, then f is a function from R n to itself and the Jacobian matrix is a ...
Every (real or complex) vector space admits a norm: If = is a Hamel basis for a vector space then the real-valued map that sends = (where all but finitely many of the scalars are ) to | | is a norm on . [10] There are also a large number of norms that exhibit additional properties that make them useful for specific problems.
The parallelogram with vertices (,, +,) is called the fundamental parallelogram. While a fundamental pair generates a lattice, a lattice does not have any unique fundamental pair; in fact, an infinite number of fundamental pairs correspond to the same lattice.
Ads
related to: solving problems on properties of parallelogram