enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Thévenin's theorem - Wikipedia

    en.wikipedia.org/wiki/Thévenin's_theorem

    The equivalent voltage V th is the voltage obtained at terminals A–B of the network with terminals A–B open circuited. The equivalent resistance R th is the resistance that the circuit between terminals A and B would have if all ideal voltage sources in the circuit were replaced by a short circuit and all ideal current sources were replaced ...

  3. Telegrapher's equations - Wikipedia

    en.wikipedia.org/wiki/Telegrapher's_equations

    The telegrapher's equations (or just telegraph equations) are a set of two coupled, linear equations that predict the voltage and current distributions on a linear electrical transmission line. The equations are important because they allow transmission lines to be analyzed using circuit theory . [ 1 ]

  4. Equivalent impedance transforms - Wikipedia

    en.wikipedia.org/wiki/Equivalent_impedance...

    An equivalent impedance is an equivalent circuit of an electrical network of impedance elements [note 2] which presents the same impedance between all pairs of terminals [note 10] as did the given network. This article describes mathematical transformations between some passive, linear impedance networks commonly found in electronic circuits.

  5. Characteristic impedance - Wikipedia

    en.wikipedia.org/wiki/Characteristic_impedance

    Applying the transmission line model based on the telegrapher's equations as derived below, [1] [2] the general expression for the characteristic impedance of a transmission line is: = + + where R {\displaystyle R} is the resistance per unit length, considering the two conductors to be in series ,

  6. Norton's theorem - Wikipedia

    en.wikipedia.org/wiki/Norton's_theorem

    To find the Norton equivalent of a linear time-invariant circuit, the Norton current I no is calculated as the current flowing at the two terminals A and B of the original circuit that is now short (zero impedance between the terminals). The Norton resistance R no is found by calculating the output voltage V o produced at A and B with no ...

  7. Maximum power transfer theorem - Wikipedia

    en.wikipedia.org/wiki/Maximum_power_transfer_theorem

    Simplified model for powering a load with resistance R L by a source with voltage V S and resistance R S.. The theorem was originally misunderstood (notably by Joule [4]) to imply that a system consisting of an electric motor driven by a battery could not be more than 50% efficient, since the power dissipated as heat in the battery would always be equal to the power delivered to the motor when ...

  8. List of electromagnetism equations - Wikipedia

    en.wikipedia.org/wiki/List_of_electromagnetism...

    Position vector r is a point to calculate the electric field; r′ is a point in the charged object. Contrary to the strong analogy between (classical) gravitation and electrostatics, there are no "centre of charge" or "centre of electrostatic attraction" analogues. [citation needed] Electric transport

  9. Ohm's law - Wikipedia

    en.wikipedia.org/wiki/Ohm's_law

    If the resistance is not constant, the previous equation cannot be called Ohm's law, but it can still be used as a definition of static/DC resistance. [4] Ohm's law is an empirical relation which accurately describes the conductivity of the vast majority of electrically conductive materials over many orders of magnitude of current.