Search results
Results from the WOW.Com Content Network
In mathematics, a rotation of axes in two dimensions is a mapping from an xy-Cartesian coordinate system to an x′y′-Cartesian coordinate system in which the origin is kept fixed and the x′ and y′ axes are obtained by rotating the x and y axes counterclockwise through an angle .
Rotation can have a sign (as in the sign of an angle): a clockwise rotation is a negative magnitude so a counterclockwise turn has a positive magnitude. A rotation is different from other types of motions: translations , which have no fixed points, and (hyperplane) reflections , each of them having an entire ( n − 1) -dimensional flat of ...
A rotation through angle θ with non-standard axes. If a standard right-handed Cartesian coordinate system is used, with the x-axis to the right and the y-axis up, the rotation R(θ) is counterclockwise. If a left-handed Cartesian coordinate system is used, with x directed to the right but y directed down, R(θ) is clockwise.
Similarly, for a rotation counterclockwise (negative direction) about the origin, the functional form is ′ = and ′ = + the matrix form is: [′ ′] = [ ] [] These formulae assume that the x axis points right and the y axis points up.
An xy-Cartesian coordinate system rotated through an angle to an x′y′-Cartesian coordinate system In mathematics, a rotation of axes in two dimensions is a mapping from an xy-Cartesian coordinate system to an x′y′-Cartesian coordinate system in which the origin is kept fixed and the x′ and y′ axes are obtained by rotating the x and ...
In 2-dimensional space, a rotation can be simply described by an angle θ of rotation, but it can be also represented by the 4 entries of a rotation matrix with 2 rows and 2 columns. In 3-dimensional space, every rotation can be interpreted as a rotation by a given angle about a single fixed axis of rotation (see Euler's rotation theorem ), and ...
Rotation formalisms are focused on proper (orientation-preserving) motions of the Euclidean space with one fixed point, that a rotation refers to.Although physical motions with a fixed point are an important case (such as ones described in the center-of-mass frame, or motions of a joint), this approach creates a knowledge about all motions.
When viewed at a position along the positive z-axis, the ¼ turn from the positive x-to the positive y-axis is counter-clockwise. For left-handed coordinates, the above description of the axes is the same, except using the left hand; and the ¼ turn is clockwise. Interchanging the labels of any two axes reverses the handedness.