Search results
Results from the WOW.Com Content Network
The distance between any two points on the real line is the absolute value of the numerical difference of their coordinates, their absolute difference. Thus if p {\displaystyle p} and q {\displaystyle q} are two points on the real line, then the distance between them is given by: [ 1 ]
Voltage, also known as (electrical) potential difference, electric pressure, or electric tension is the difference in electric potential between two points. [1] [2] In a static electric field, it corresponds to the work needed per unit of charge to move a positive test charge from the first point to the second point.
Equivalently, it is the potential difference between two points that will impart one joule of energy per coulomb of charge that passes through it. It can be expressed in terms of SI base units (m, kg, s, and A) as
A diagram illustrating great-circle distance (drawn in red) between two points on a sphere, P and Q. Two antipodal points, u and v are also shown. The great-circle distance, orthodromic distance, or spherical distance is the distance between two points on a sphere, measured along the great-circle arc between them. This arc is the shortest path ...
Taxicab geometry or Manhattan geometry is geometry where the familiar Euclidean distance is ignored, and the distance between two points is instead defined to be the sum of the absolute differences of their respective Cartesian coordinates, a distance function (or metric) called the taxicab distance, Manhattan distance, or city block distance.
The distance between sets A and B is the infimum of the distances between any two of their respective points: (,) =, (,). This does not define a metric on the set of such subsets: the distance between overlapping sets is zero, and this distance does not satisfy the triangle inequality for any metric space with two or more points (consider the ...
In mathematics, specifically statistics and information geometry, a Bregman divergence or Bregman distance is a measure of difference between two points, defined in terms of a strictly convex function; they form an important class of divergences.
The haversine formula determines the great-circle distance between two points on a sphere given their longitudes and latitudes.Important in navigation, it is a special case of a more general formula in spherical trigonometry, the law of haversines, that relates the sides and angles of spherical triangles.