Search results
Results from the WOW.Com Content Network
A demo for Prim's algorithm based on Euclidean distance. In computer science, Prim's algorithm is a greedy algorithm that finds a minimum spanning tree for a weighted undirected graph. This means it finds a subset of the edges that forms a tree that includes every vertex, where the total weight of all the edges in the tree is minimized. The ...
For points in any dimension, the minimum spanning tree can be constructed in time () by constructing a complete graph with an edge between every pair of points, weighted by Euclidean distance, and then applying a graph minimum spanning tree algorithm such as the Prim–Dijkstra–Jarník algorithm or Borůvka's algorithm on it.
Similarly to Prim's algorithm there are components in Kruskal's approach that can not be parallelised in its classical variant. For example, determining whether or not two vertices are in the same subtree is difficult to parallelise, as two union operations might attempt to join the same subtrees at the same time.
An animation of generating a 30 by 20 maze using Prim's algorithm. This algorithm is a randomized version of Prim's algorithm. Start with a grid full of walls. Pick a cell, mark it as part of the maze. Add the walls of the cell to the wall list. While there are walls in the list: Pick a random wall from the list.
For example, Kruskal's algorithm processes edges in turn, deciding whether to include the edge in the MST based on whether it would form a cycle with all previously chosen edges. Both Prim's algorithm and Kruskal's algorithm require processes to know the state of the whole graph, which is very difficult to discover in the message-passing model.
This is how I interpreted the section Prim's algorithm in Introduction to Algorithms (chapter 23, section 2, ISBN 0-262-53196-8). I suggest somebody that can explain this more intuitively edit the article accordingly.
English: Diagram to assist in proof of Prim's algorithm. If is a minimum spanning tree, and Y is the tree found by Prim's algorithm, we find e, the first edge added by the algorithm which is in but not in Y. Let V be the vertices added to the tree up to that point.
The standard algorithm for adding multidigit numbers is to align the addends vertically and add the columns, starting from the ones column on the right. If a column exceeds nine, the extra digit is "carried" into the next column. For example, in the addition 27 + 59. ¹ 27 + 59 ———— 86 7 + 9 = 16, and the digit 1 is the carry.