enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cluster analysis - Wikipedia

    en.wikipedia.org/wiki/Cluster_analysis

    Cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group (called a cluster) are more similar (in some specific sense defined by the analyst) to each other than to those in other groups (clusters).

  3. Model-based clustering - Wikipedia

    en.wikipedia.org/wiki/Model-based_clustering

    Several of these models correspond to well-known heuristic clustering methods. For example, k-means clustering is equivalent to estimation of the EII clustering model using the classification EM algorithm. [8] The Bayesian information criterion (BIC) can be used to choose the best clustering model as well as the number of clusters. It can also ...

  4. k-means clustering - Wikipedia

    en.wikipedia.org/wiki/K-means_clustering

    Example image with only red and green channel (for illustration purposes) Vector quantization of colors present in the image above into Voronoi cells using k-means. Example: In the field of computer graphics, k-means clustering is often employed for color quantization in image compression. By reducing the number of colors used to represent an ...

  5. Cluster diagram - Wikipedia

    en.wikipedia.org/wiki/Cluster_diagram

    A cluster in general is a group or bunch of several discrete items that are close to each other. The cluster diagram figures a cluster, such as a network diagram figures a network, a flow diagram a process or movement of objects, and a tree diagram an abstract tree. But all these diagrams can be considered interconnected: A network diagram can ...

  6. Conceptual clustering - Wikipedia

    en.wikipedia.org/wiki/Conceptual_clustering

    Conceptual clustering vs. data clustering [ edit ] Conceptual clustering is obviously closely related to data clustering; however, in conceptual clustering it is not only the inherent structure of the data that drives cluster formation, but also the Description language which is available to the learner.

  7. Hierarchical clustering - Wikipedia

    en.wikipedia.org/wiki/Hierarchical_clustering

    The standard algorithm for hierarchical agglomerative clustering (HAC) has a time complexity of () and requires () memory, which makes it too slow for even medium data sets. . However, for some special cases, optimal efficient agglomerative methods (of complexity ()) are known: SLINK [2] for single-linkage and CLINK [3] for complete-linkage clusteri

  8. Constrained clustering - Wikipedia

    en.wikipedia.org/wiki/Constrained_clustering

    In computer science, constrained clustering is a class of semi-supervised learning algorithms. Typically, constrained clustering incorporates either a set of must-link constraints, cannot-link constraints, or both, with a data clustering algorithm. A cluster in which the members conform to all must-link and cannot-link constraints is called a ...

  9. Correlation clustering - Wikipedia

    en.wikipedia.org/wiki/Correlation_clustering

    For example, given a weighted graph = (,) where the edge weight indicates whether two nodes are similar (positive edge weight) or different (negative edge weight), the task is to find a clustering that either maximizes agreements (sum of positive edge weights within a cluster plus the absolute value of the sum of negative edge weights between ...